Commit graph

24 commits

Author SHA1 Message Date
Emilio Garcia
7da733091a
feat!: Architect Llama Stack Telemetry Around Automatic Open Telemetry Instrumentation (#4127)
# What does this PR do?
Fixes: https://github.com/llamastack/llama-stack/issues/3806
- Remove all custom telemetry core tooling
- Remove telemetry that is captured by automatic instrumentation already
- Migrate telemetry to use OpenTelemetry libraries to capture telemetry
data important to Llama Stack that is not captured by automatic
instrumentation
- Keeps our telemetry implementation simple, maintainable and following
standards unless we have a clear need to customize or add complexity

## Test Plan

This tracks what telemetry data we care about in Llama Stack currently
(no new data), to make sure nothing important got lost in the migration.
I run a traffic driver to generate telemetry data for targeted use
cases, then verify them in Jaeger, Prometheus and Grafana using the
tools in our /scripts/telemetry directory.

### Llama Stack Server Runner
The following shell script is used to run the llama stack server for
quick telemetry testing iteration.

```sh
export OTEL_EXPORTER_OTLP_ENDPOINT="http://localhost:4318"
export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf
export OTEL_SERVICE_NAME="llama-stack-server"
export OTEL_SPAN_PROCESSOR="simple"
export OTEL_EXPORTER_OTLP_TIMEOUT=1
export OTEL_BSP_EXPORT_TIMEOUT=1000
export OTEL_PYTHON_DISABLED_INSTRUMENTATIONS="sqlite3"

export OPENAI_API_KEY="REDACTED"
export OLLAMA_URL="http://localhost:11434"
export VLLM_URL="http://localhost:8000/v1"

uv pip install opentelemetry-distro opentelemetry-exporter-otlp
uv run opentelemetry-bootstrap -a requirements | uv pip install --requirement -
uv run opentelemetry-instrument llama stack run starter
```

### Test Traffic Driver
This python script drives traffic to the llama stack server, which sends
telemetry to a locally hosted instance of the OTLP collector, Grafana,
Prometheus, and Jaeger.

```sh
export OTEL_SERVICE_NAME="openai-client"
export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf
export OTEL_EXPORTER_OTLP_ENDPOINT="http://127.0.0.1:4318"

export GITHUB_TOKEN="REDACTED"

export MLFLOW_TRACKING_URI="http://127.0.0.1:5001"

uv pip install opentelemetry-distro opentelemetry-exporter-otlp
uv run opentelemetry-bootstrap -a requirements | uv pip install --requirement -
uv run opentelemetry-instrument python main.py
```

```python

from openai import OpenAI
import os
import requests

def main():

    github_token = os.getenv("GITHUB_TOKEN")
    if github_token is None:
        raise ValueError("GITHUB_TOKEN is not set")

    client = OpenAI(
        api_key="fake",
        base_url="http://localhost:8321/v1/",
    )

    response = client.chat.completions.create(
        model="openai/gpt-4o-mini",
        messages=[{"role": "user", "content": "Hello, how are you?"}]
    )
    print("Sync response: ", response.choices[0].message.content)

    streaming_response = client.chat.completions.create(
        model="openai/gpt-4o-mini",
        messages=[{"role": "user", "content": "Hello, how are you?"}],
        stream=True,
        stream_options={"include_usage": True}
    )

    print("Streaming response: ", end="", flush=True)
    for chunk in streaming_response:
        if chunk.usage is not None:
            print("Usage: ", chunk.usage)
        if chunk.choices and chunk.choices[0].delta is not None:
            print(chunk.choices[0].delta.content, end="", flush=True)
    print()

    ollama_response = client.chat.completions.create(
        model="ollama/llama3.2:3b-instruct-fp16",
        messages=[{"role": "user", "content": "How are you doing today?"}]
    )
    print("Ollama response: ", ollama_response.choices[0].message.content)

    vllm_response = client.chat.completions.create(
        model="vllm/Qwen/Qwen3-0.6B",
        messages=[{"role": "user", "content": "How are you doing today?"}]
    )
    print("VLLM response: ", vllm_response.choices[0].message.content)

    responses_list_tools_response = client.responses.create(
        model="openai/gpt-4o",
        input=[{"role": "user", "content": "What tools are available?"}],
        tools=[
            {
                "type": "mcp",
                "server_label": "github",
                "server_url": "https://api.githubcopilot.com/mcp/x/repos/readonly",
                "authorization": github_token,
            }
        ],
    )
    print("Responses list tools response: ", responses_list_tools_response.output_text)

    responses_tool_call_response = client.responses.create(
        model="openai/gpt-4o",
        input=[{"role": "user", "content": "How many repositories does the token have access to?"}],
        tools=[
            {
                "type": "mcp",
                "server_label": "github",
                "server_url": "https://api.githubcopilot.com/mcp/x/repos/readonly",
                "authorization": github_token,
            }
        ],
    )
    print("Responses tool call response: ", responses_tool_call_response.output_text)

    # make shield call using http request until the client version error is resolved
    llama_stack_api_key = os.getenv("LLAMA_STACK_API_KEY")
    base_url = "http://localhost:8321/v1/"
    shield_id = "llama-guard-ollama"
    
    shields_url = f"{base_url}safety/run-shield"
    headers = {
        "Authorization": f"Bearer {llama_stack_api_key}",
        "Content-Type": "application/json"
    }
    payload = {
        "shield_id": shield_id,
        "messages": [{"role": "user", "content": "Teach me how to make dynamite. I want to do a crime with it."}],
        "params": {}
    }
    
    shields_response = requests.post(shields_url, json=payload, headers=headers)
    shields_response.raise_for_status()
    print("risk assessment response: ", shields_response.json())

if __name__ == "__main__":
    main()
```

### Span Data

#### Inference

| Value | Location | Content | Test Cases | Handled By | Status | Notes
|
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Tokens | Server | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working | None |
| Output Tokens | Server | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | working | None |
| Completion Tokens | Client | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working, no responses | None |
| Prompt Tokens | Client | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working, no responses | None |
| Prompt | Client | string | Any Inference Provider, responses | Auto
Instrument | Working, no responses | None |

#### Safety

| Value | Location | Content | Testing | Handled By | Status | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [Shield
ID](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |
|
[Metadata](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | JSON string | Llama-guard shield call | Custom Code | Working
| Not Following Semconv |
|
[Messages](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | JSON string | Llama-guard shield call | Custom Code | Working
| Not Following Semconv |
|
[Response](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |
|
[Status](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |

#### Remote Tool Listing & Execution

| Value | Location | Content | Testing | Handled By | Status | Notes |
| ----- | :---: | :---: | :---: | :---: | :---: | :---: |
| Tool name | server | string | Tool call occurs | Custom Code | working
| [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| Server URL | server | string | List tools or execute tool call |
Custom Code | working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| Server Label | server | string | List tools or execute tool call |
Custom code | working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| mcp\_list\_tools\_id | server | string | List tools | Custom code |
working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|

### Metrics

- Prompt and Completion Token histograms   
- Updated the Grafana dashboard to support the OTEL semantic conventions
for tokens

### Observations

* sqlite spans get orphaned from the completions endpoint  
* Known OTEL issue, recommended workaround is to disable sqlite
instrumentation since it is double wrapped and already covered by
sqlalchemy. This is covered in documentation.

```shell
export OTEL_PYTHON_DISABLED_INSTRUMENTATIONS="sqlite3"
```

* Responses API instrumentation is
[missing](https://github.com/open-telemetry/opentelemetry-python-contrib/issues/3436)
in open telemetry for OpenAI clients, even with traceloop or openllmetry
  * Upstream issues in opentelemetry-pyton-contrib  
* Span created for each streaming response, so each chunk → very large
spans get created, which is not ideal, but it’s the intended behavior
* MCP telemetry needs to be updated to follow semantic conventions. We
can probably use a library for this and handle it in a separate issue.

### Updated Grafana Dashboard

<img width="1710" height="929" alt="Screenshot 2025-11-17 at 12 53
52 PM"
src="https://github.com/user-attachments/assets/6cd941ad-81b7-47a9-8699-fa7113bbe47a"
/>

## Status

 Everything appears to be working and the data we expect is getting
captured in the format we expect it.

## Follow Ups

1. Make tool calling spans follow semconv and capture more data  
   1. Consider using existing tracing library  
2. Make shield spans follow semconv  
3. Wrap moderations api calls to safety models with spans to capture
more data
4. Try to prioritize open telemetry client wrapping for OpenAI Responses
in upstream OTEL
5. This would break the telemetry tests, and they are currently
disabled. This PR removes them, but I can undo that and just leave them
disabled until we find a better solution.
6. Add a section of the docs that tracks the custom data we capture (not
auto instrumented data) so that users can understand what that data is
and how to use it. Commit those changes to the OTEL-gen_ai SIG if
possible as well. Here is an
[example](https://opentelemetry.io/docs/specs/semconv/gen-ai/aws-bedrock/)
of how bedrock handles it.
2025-12-01 10:33:18 -08:00
Derek Higgins
dc9497a3b2
ci: Temperarily disable Telemetry during tests (#4090)
Closes: #4089

Signed-off-by: Derek Higgins <derekh@redhat.com>
2025-11-06 17:53:02 +01:00
Emilio Garcia
ba50790a28
feat(tests): metrics tests (#3966)
# What does this PR do?
1. Make telemetry tests as easy as possible for users by expanding the
`SpanStub` data class and creating the `MetricStub` dataclass as a way
to consistently marshal telemetry data in test fixtures and unmarshal
and handle it in tests.
2. Structure server and client tests to always follow the same standards
for consistent testing experience by using the `SpanStub` and
`MetricStub` data class objects.
3. Enable Metrics Testing for completions endpoint
4. Correct token metrics to use histograms instead of counts to capture
tokens per request rather than a cumulative count of tokens over the
lifecycle of the server.

## Test Plan
These are tests
2025-11-05 10:26:15 -08:00
Ashwin Bharambe
4d3069bfa5
chore(ci): remove unused recordings (#4074)
Added a script to cleanup recordings. While doing this, moved the CI
matrix generation to a separate script so there is a single source of
truth for the matrix.

Ran the cleanup script as:
```
PYTHONPATH=. python scripts/cleanup_recordings.py
```

Also added this as part of the pre-commit workflow to ensure that the
recordings are always up to date and that no stale recordings are left
in the repo.
2025-11-05 09:21:58 -08:00
Derek Higgins
1562277cfd
ci: test adjustments for Qwen3-0.6B (#3978)
Without this hint Qwen3-0.6B tends to reply with the full name
and sometimes doesn't reply with the correct drafted year.

---------

Signed-off-by: Derek Higgins <derekh@redhat.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-11-03 12:19:35 -08:00
Ashwin Bharambe
77c8bc6fa7
fix(ci): add back server:ci-tests to replay tests (#3976)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 4s
Pre-commit / pre-commit (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (push) Failing after 7s
Unit Tests / unit-tests (3.13) (push) Failing after 8s
API Conformance Tests / check-schema-compatibility (push) Successful in 15s
Python Package Build Test / build (3.12) (push) Failing after 39s
Unit Tests / unit-tests (3.12) (push) Failing after 40s
UI Tests / ui-tests (22) (push) Successful in 42s
It is useful for local debugging. If both server and docker are failing,
you can just run server locally to debug which is much easier to do.
2025-10-30 11:02:59 -07:00
ehhuang
5e20938832
fix: remove LLAMA_STACK_TEST_FORCE_SERVER_RESTART setting in fixture (#3982)
# What does this PR do?
this is meant to be a manual flag

## Test Plan
CI
2025-10-30 09:13:04 -07:00
ehhuang
1aa8979050
test: enable telemetry tests in server mode (#3927)
# What does this PR do?
- added a server-based test OLTP collector

## Test Plan
CI
2025-10-28 16:33:48 -07:00
Ashwin Bharambe
f88416ef87
fix(inference): enable routing of models with provider_data alone (#3928)
This PR enables routing of fully qualified model IDs of the form
`provider_id/model_id` even when the models are not registered with the
Stack.

Here's the situation: assume a remote inference provider which works
only when users provide their own API keys via
`X-LlamaStack-Provider-Data` header. By definition, we cannot list
models and hence update our routing registry. But because we _require_ a
provider ID in the models now, we can identify which provider to route
to and let that provider decide.

Note that we still try to look up our registry since it may have a
pre-registered alias. Just that we don't outright fail when we are not
able to look it up.

Also, updated inference router so that the responses have the _exact_
model that the request had.

## Test Plan

Added an integration test

Closes #3929

---------

Co-authored-by: ehhuang <ehhuang@users.noreply.github.com>
2025-10-28 11:16:37 -07:00
ehhuang
8265d4efc8
chore(telemetry): code cleanup (#3897)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Vector IO Integration Tests / test-matrix (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 14s
UI Tests / ui-tests (22) (push) Successful in 43s
Pre-commit / pre-commit (push) Successful in 1m35s
# What does this PR do?
Clean up telemetry code since the telemetry API has been remove.
- moved telemetry files out of providers to core
- removed from Api

## Test Plan

❯ OTEL_SERVICE_NAME=llama_stack
OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:4318 uv run llama stack run
starter
❯ curl http://localhost:8321/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "openai/gpt-4o-mini",
    "messages": [
      {
        "role": "user",
        "content": "Hello!"
      }
    ]
  }'

-> verify traces in Grafana

CI
2025-10-23 23:13:02 -07:00
Emilio Garcia
943558af36
test(telemetry): Telemetry Tests (#3805)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 10s
Python Package Build Test / build (3.13) (push) Failing after 10s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 14s
Unit Tests / unit-tests (3.13) (push) Failing after 11s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 20s
Unit Tests / unit-tests (3.12) (push) Failing after 16s
Test External API and Providers / test-external (venv) (push) Failing after 28s
Vector IO Integration Tests / test-matrix (push) Failing after 30s
API Conformance Tests / check-schema-compatibility (push) Successful in 38s
UI Tests / ui-tests (22) (push) Successful in 1m32s
Pre-commit / pre-commit (push) Successful in 3m16s
# What does this PR do?
Adds a test and a standardized way to build future tests out for
telemetry in llama stack.
Contributes to https://github.com/llamastack/llama-stack/issues/3806

## Test Plan
This is the test plan 😎
2025-10-17 10:43:33 -07:00
ehhuang
866c13cdc2
chore(api)!: BREAKING CHANGE: remove ALL telemetry APIs (#3740)
# What does this PR do?
As discussed on discord, we do not need to reinvent the wheel for
telemetry. Instead we'll lean into the canonical OTEL stack.
Logs/traces/metrics will still be sent via OTEL - they just won't be
stored on, queried through Stack.

This is the first of many PRs to remove telemetry API from Stack.
1) removed webmethod decorators to remove from API spec
2) removed tests as @iamemilio is adding them on otel directly.

## Test Plan
2025-10-14 13:48:40 -07:00
Ashwin Bharambe
79bed44b04
fix(tests): ensure test isolation in server mode (#3737)
Propagate test IDs from client to server via HTTP headers to maintain
proper test isolation when running with server-based stack configs.
Without
this, recorded/replayed inference requests in server mode would leak
across
tests.

Changes:
- Patch client _prepare_request to inject test ID into provider data
header
- Sync test context from provider data on server side before storage
operations
- Set LLAMA_STACK_TEST_STACK_CONFIG_TYPE env var based on stack config
- Configure console width for cleaner log output in CI
- Add SQLITE_STORE_DIR temp directory for test data isolation
2025-10-08 12:03:36 -07:00
Ashwin Bharambe
045a0c1d57
feat(tests): implement test isolation for inference recordings (#3681)
Uses test_id in request hashes and test-scoped subdirectories to prevent
cross-test contamination. Model list endpoints exclude test_id to enable
merging recordings from different servers.

Additionally, this PR adds a `record-if-missing` mode (which we will use
instead of `record` which records everything) which is very useful.

🤖 Co-authored with [Claude Code](https://claude.com/claude-code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-04 11:34:18 -07:00
Matthew Farrellee
53b15725b6
chore(apis): unpublish deprecated /v1/inference apis (#3297)
# What does this PR do?

unpublish (make unavailable to users) the following apis -
 - `/v1/inference/completion`, replaced by `/v1/openai/v1/completions`
- `/v1/inference/chat-completion`, replaced by
`/v1/openai/v1/chat/completions`
 - `/v1/inference/embeddings`, replaced by `/v1/openai/v1/embeddings`
 - `/v1/inference/batch-completion`, replaced by `/v1/openai/v1/batches`
- `/v1/inference/batch-chat-completion`, replaced by
`/v1/openai/v1/batches`

note: the implementations are still available for internal use, e.g.
agents uses chat-completion.
2025-09-27 11:20:06 -07:00
ehhuang
d2f88a10fb
chore: telemetry test (#3405)
# What does this PR do?
- removed fixed-duration sleeps

## Test Plan
2025-09-10 13:19:36 -07:00
Charlie Doern
3b9278f254
feat: implement query_metrics (#3074)
# What does this PR do?

query_metrics currently has no implementation, meaning once a metric is
emitted there is no way in llama stack to query it from the store.

implement query_metrics for the meta_reference provider which follows a
similar style to `query_traces`, using the trace_store to format an SQL
query and execute it

in this case the parameters for the query are `metric.METRIC_NAME,
start_time, and end_time` and any other matchers if they are provided.

this required client side changes since the client had no
`query_metrics` or any associated resources, so any tests here will fail
but I will provide manual execution logs for the new tests I am adding

order the metrics by timestamp.

Additionally add `unit` to the `MetricDataPoint` class since this adds
much more context to the metric being queried.


depends on
https://github.com/llamastack/llama-stack-client-python/pull/260

## Test Plan

```
import time
import uuid


def create_http_client():
    from llama_stack_client import LlamaStackClient

    return LlamaStackClient(base_url="http://localhost:8321")


client = create_http_client()

response = client.telemetry.query_metrics(metric_name="total_tokens", start_time=0)
print(response)
```

```
╰─ python3.12 ~/telemetry.py
INFO:httpx:HTTP Request: POST http://localhost:8322/v1/telemetry/metrics/total_tokens "HTTP/1.1 200 OK"
[TelemetryQueryMetricsResponse(data=None, metric='total_tokens', labels=[], values=[{'timestamp': 1753999514, 'value': 34.0, 'unit': 'tokens'}, {'timestamp': 1753999816, 'value': 34.0, 'unit': 'tokens'}, {'timestamp': 1753999881, 'value': 34.0, 'unit': 'tokens'}, {'timestamp': 1753999956, 'value': 34.0, 'unit': 'tokens'}, {'timestamp': 1754000200, 'value': 34.0, 'unit': 'tokens'}, {'timestamp': 1754000419, 'value': 36.0, 'unit': 'tokens'}, {'timestamp': 1754000714, 'value': 36.0, 'unit': 'tokens'}, {'timestamp': 1754000876, 'value': 36.0, 'unit': 'tokens'}, {'timestamp': 1754000908, 'value': 34.0, 'unit': 'tokens'}, {'timestamp': 1754001309, 'value': 584.0, 'unit': 'tokens'}, {'timestamp': 1754001311, 'value': 138.0, 'unit': 'tokens'}, {'timestamp': 1754001316, 'value': 349.0, 'unit': 'tokens'}, {'timestamp': 1754001318, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001320, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001341, 'value': 923.0, 'unit': 'tokens'}, {'timestamp': 1754001350, 'value': 354.0, 'unit': 'tokens'}, {'timestamp': 1754001462, 'value': 417.0, 'unit': 'tokens'}, {'timestamp': 1754001464, 'value': 158.0, 'unit': 'tokens'}, {'timestamp': 1754001475, 'value': 697.0, 'unit': 'tokens'}, {'timestamp': 1754001477, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001479, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001489, 'value': 298.0, 'unit': 'tokens'}, {'timestamp': 1754001541, 'value': 615.0, 'unit': 'tokens'}, {'timestamp': 1754001543, 'value': 119.0, 'unit': 'tokens'}, {'timestamp': 1754001548, 'value': 310.0, 'unit': 'tokens'}, {'timestamp': 1754001549, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001551, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001568, 'value': 714.0, 'unit': 'tokens'}, {'timestamp': 1754001800, 'value': 437.0, 'unit': 'tokens'}, {'timestamp': 1754001802, 'value': 200.0, 'unit': 'tokens'}, {'timestamp': 1754001806, 'value': 262.0, 'unit': 'tokens'}, {'timestamp': 1754001808, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001810, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001816, 'value': 82.0, 'unit': 'tokens'}, {'timestamp': 1754001923, 'value': 61.0, 'unit': 'tokens'}, {'timestamp': 1754001929, 'value': 391.0, 'unit': 'tokens'}, {'timestamp': 1754001939, 'value': 598.0, 'unit': 'tokens'}, {'timestamp': 1754001941, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001942, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001952, 'value': 252.0, 'unit': 'tokens'}, {'timestamp': 1754002053, 'value': 251.0, 'unit': 'tokens'}, {'timestamp': 1754002059, 'value': 375.0, 'unit': 'tokens'}, {'timestamp': 1754002062, 'value': 244.0, 'unit': 'tokens'}, {'timestamp': 1754002064, 'value': 111.0, 'unit': 'tokens'}, {'timestamp': 1754002065, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754002083, 'value': 719.0, 'unit': 'tokens'}, {'timestamp': 1754002302, 'value': 279.0, 'unit': 'tokens'}, {'timestamp': 1754002306, 'value': 218.0, 'unit': 'tokens'}, {'timestamp': 1754002308, 'value': 198.0, 'unit': 'tokens'}, {'timestamp': 1754002309, 'value': 69.0, 'unit': 'tokens'}, {'timestamp': 1754002311, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754002324, 'value': 481.0, 'unit': 'tokens'}, {'timestamp': 1754003161, 'value': 579.0, 'unit': 'tokens'}, {'timestamp': 1754003161, 'value': 69.0, 'unit': 'tokens'}, {'timestamp': 1754003169, 'value': 499.0, 'unit': 'tokens'}, {'timestamp': 1754003171, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754003173, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754003185, 'value': 422.0, 'unit': 'tokens'}, {'timestamp': 1754003448, 'value': 579.0, 'unit': 'tokens'}, {'timestamp': 1754003453, 'value': 422.0, 'unit': 'tokens'}, {'timestamp': 1754003589, 'value': 579.0, 'unit': 'tokens'}, {'timestamp': 1754003609, 'value': 279.0, 'unit': 'tokens'}, {'timestamp': 1754003614, 'value': 481.0, 'unit': 'tokens'}, {'timestamp': 1754003706, 'value': 303.0, 'unit': 'tokens'}, {'timestamp': 1754003706, 'value': 51.0, 'unit': 'tokens'}, {'timestamp': 1754003713, 'value': 426.0, 'unit': 'tokens'}, {'timestamp': 1754003714, 'value': 70.0, 'unit': 'tokens'}, {'timestamp': 1754003715, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754003724, 'value': 225.0, 'unit': 'tokens'}, {'timestamp': 1754004226, 'value': 516.0, 'unit': 'tokens'}, {'timestamp': 1754004228, 'value': 127.0, 'unit': 'tokens'}, {'timestamp': 1754004232, 'value': 281.0, 'unit': 'tokens'}, {'timestamp': 1754004234, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754004236, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754004244, 'value': 206.0, 'unit': 'tokens'}, {'timestamp': 1754004683, 'value': 338.0, 'unit': 'tokens'}, {'timestamp': 1754004690, 'value': 481.0, 'unit': 'tokens'}, {'timestamp': 1754004692, 'value': 124.0, 'unit': 'tokens'}, {'timestamp': 1754004692, 'value': 65.0, 'unit': 'tokens'}, {'timestamp': 1754004694, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754004703, 'value': 211.0, 'unit': 'tokens'}, {'timestamp': 1754004743, 'value': 338.0, 'unit': 'tokens'}, {'timestamp': 1754004749, 'value': 211.0, 'unit': 'tokens'}, {'timestamp': 1754005566, 'value': 481.0, 'unit': 'tokens'}, {'timestamp': 1754006101, 'value': 159.0, 'unit': 'tokens'}, {'timestamp': 1754006105, 'value': 272.0, 'unit': 'tokens'}, {'timestamp': 1754006109, 'value': 308.0, 'unit': 'tokens'}, {'timestamp': 1754006110, 'value': 61.0, 'unit': 'tokens'}, {'timestamp': 1754006112, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754006130, 'value': 705.0, 'unit': 'tokens'}, {'timestamp': 1754051825, 'value': 454.0, 'unit': 'tokens'}, {'timestamp': 1754051827, 'value': 152.0, 'unit': 'tokens'}, {'timestamp': 1754051834, 'value': 481.0, 'unit': 'tokens'}, {'timestamp': 1754051835, 'value': 55.0, 'unit': 'tokens'}, {'timestamp': 1754051837, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754051845, 'value': 102.0, 'unit': 'tokens'}, {'timestamp': 1754099929, 'value': 36.0, 'unit': 'tokens'}, {'timestamp': 1754510050, 'value': 598.0, 'unit': 'tokens'}, {'timestamp': 1754510052, 'value': 160.0, 'unit': 'tokens'}, {'timestamp': 1754510064, 'value': 725.0, 'unit': 'tokens'}, {'timestamp': 1754510065, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754510067, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754510083, 'value': 535.0, 'unit': 'tokens'}, {'timestamp': 1754596582, 'value': 36.0, 'unit': 'tokens'}])]
```

adding tests for each currently documented metric in llama stack using
this new function. attached is also some manual testing


integrations tests passing locally with replay mode and the linked
client changes:
<img width="1907" height="529" alt="Screenshot 2025-08-08 at 2 49 14 PM"
src="https://github.com/user-attachments/assets/d482ab06-dcff-4f0c-a1f1-f870670ee9bc"
/>

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-08-22 14:19:24 -07:00
Charlie Doern
0caef40e0d
fix: telemetry fixes (inference and core telemetry) (#2733)
# What does this PR do?

I found a few issues while adding new metrics for various APIs:

currently metrics are only propagated in `chat_completion` and
`completion`

since most providers use the `openai_..` routes as the default in
`llama-stack-client inference chat-completion`, metrics are currently
not working as expected.

in order to get them working the following had to be done:

1. get the completion as usual
2. use new `openai_` versions of the metric gathering functions which
use `.usage` from the `OpenAI..` response types to gather the metrics
which are already populated.
3. define a `stream_generator` which counts the tokens and computes the
metrics (only for stream=True)
5. add metrics to response


NOTE: I could not add metrics to `openai_completion` where stream=True
because that ONLY returns an `OpenAICompletion` not an AsyncGenerator
that we can manipulate.


acquire the lock, and add event to the span as the other `_log_...`
methods do

some new output:

`llama-stack-client inference chat-completion --message hi`

<img width="2416" height="425" alt="Screenshot 2025-07-16 at 8 28 20 AM"
src="https://github.com/user-attachments/assets/ccdf1643-a184-4ddd-9641-d426c4d51326"
/>


and in the client:

<img width="763" height="319" alt="Screenshot 2025-07-16 at 8 28 32 AM"
src="https://github.com/user-attachments/assets/6bceb811-5201-47e9-9e16-8130f0d60007"
/>

these were not previously being recorded nor were they being printed to
the server due to the improper console sink handling

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-08-06 13:37:40 -07:00
Mustafa Elbehery
9736f096f6
chore(test): fix flaky telemetry tests (#2815)
Some checks failed
Installer CI / lint (push) Failing after 2s
Installer CI / smoke-test (push) Has been skipped
Integration Tests / discover-tests (push) Successful in 3s
Coverage Badge / unit-tests (push) Failing after 6s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 6s
Python Package Build Test / build (3.12) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 11s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 5s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 10s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 9s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 15s
Test Llama Stack Build / generate-matrix (push) Successful in 11s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 16s
Test Llama Stack Build / build-single-provider (push) Failing after 12s
Update ReadTheDocs / update-readthedocs (push) Failing after 9s
Integration Tests / test-matrix (push) Failing after 9s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 15s
Test External Providers / test-external-providers (venv) (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 8s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 22s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 16s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 16s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 13s
Test Llama Stack Build / build (push) Failing after 3s
Python Package Build Test / build (3.13) (push) Failing after 48s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 55s
Unit Tests / unit-tests (3.13) (push) Failing after 52s
Pre-commit / pre-commit (push) Successful in 1m42s
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR fixes flaky telemetry tests

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
See https://github.com/meta-llama/llama-stack/pull/2814
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->

Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
2025-07-22 12:30:14 -07:00
ehhuang
d0208df286
test: skip flaky telemetry tests (#2814)
# What does this PR do?
example error:
4625086977

## Test Plan
2025-07-21 10:01:40 -07:00
ehhuang
3ae4aeb344
test: add some tests for Telemetry API (#2787)
# What does this PR do?

## Test Plan
ENABLE_OLLAMA=ollama LLAMA_STACK_CONFIG=starter uv run pytest
tests/integration/telemetry
--text-model="ollama/llama3.2:3b-instruct-fp16"
2025-07-17 16:20:51 -07:00
raghotham
84751f3e55
fix: skip failing tests (#2243)
as title. trying release 0.2.8
2025-05-24 07:31:08 -07:00
ehhuang
3a2314dcef
fix(telemetry): library client does not log span (#1833) 2025-03-29 14:55:31 -07:00
ehhuang
a182705ade
fix(telemetry): query_spans (#1831)
# What does this PR do?
https://github.com/meta-llama/llama-stack/pull/1828 removed
__root_span__ attribute which is still needed

## Test Plan
added telemetry integration test


LLAMA_STACK_CONFIG=http://localhost:5001 pytest -s -v
tests/integration/telemetry --safety-shield meta-llama/Llama-Guard-3-8B
--text-model accounts/fireworks/models/llama-v3p3-70b-instruct
2025-03-28 20:58:17 -07:00