Commit graph

15 commits

Author SHA1 Message Date
Xi Yan
3c72c034e6
[remove import *] clean up import *'s (#689)
# What does this PR do?

- as title, cleaning up `import *`'s
- upgrade tests to make them more robust to bad model outputs
- remove import *'s in llama_stack/apis/* (skip __init__ modules)
<img width="465" alt="image"
src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2"
/>

- run `sh run_openapi_generator.sh`, no types gets affected

## Test Plan

### Providers Tests

**agents**
```
pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8
```

**inference**
```bash
# meta-reference
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

# together
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py 
```

**safety**
```
pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B
```

**memory**
```
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
```

**scoring**
```
pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
```


**datasetio**
```
pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py
pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py
```


**eval**
```
pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py
```

### Client-SDK Tests
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk
```

### llama-stack-apps
```
PORT=5000
LOCALHOST=localhost

python -m examples.agents.hello $LOCALHOST $PORT
python -m examples.agents.inflation $LOCALHOST $PORT
python -m examples.agents.podcast_transcript $LOCALHOST $PORT
python -m examples.agents.rag_as_attachments $LOCALHOST $PORT
python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT
python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT
python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT

# Vision model
python -m examples.interior_design_assistant.app
python -m examples.agent_store.app $LOCALHOST $PORT
```

### CLI
```
which llama
llama model prompt-format -m Llama3.2-11B-Vision-Instruct
llama model list
llama stack list-apis
llama stack list-providers inference

llama stack build --template ollama --image-type conda
```

### Distributions Tests
**ollama**
```
llama stack build --template ollama --image-type conda
ollama run llama3.2:1b-instruct-fp16
llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
```

**fireworks**
```
llama stack build --template fireworks --image-type conda
llama stack run ./llama_stack/templates/fireworks/run.yaml
```

**together**
```
llama stack build --template together --image-type conda
llama stack run ./llama_stack/templates/together/run.yaml
```

**tgi**
```
llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-27 15:45:44 -08:00
Ashwin Bharambe
b7a7caa9a8 Fix conversion to RawMessage everywhere 2024-12-17 14:00:43 -08:00
Ashwin Bharambe
8de8eb03c8
Update the "InterleavedTextMedia" type (#635)
## What does this PR do?

This is a long-pending change and particularly important to get done
now.

Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.

See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.

## Test Plan

```bash
cd llama_stack/providers/tests

pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
  --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar

pytest -s -v -k fireworks agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct
```

Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:

```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py

# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
2024-12-17 11:18:31 -08:00
Dinesh Yeduguru
516e1a3e59
add embedding model by default to distribution templates (#617)
# What does this PR do?
Adds the sentence transformer provider and the `all-MiniLM-L6-v2`
embedding model to the default models to register in the run.yaml for
all providers.

## Test Plan
llama stack build --template together --image-type conda
llama stack run
~/.llama/distributions/llamastack-together/together-run.yaml
2024-12-13 12:48:00 -08:00
Dinesh Yeduguru
96e158eaac
Make embedding generation go through inference (#606)
This PR does the following:
1) adds the ability to generate embeddings in all supported inference
providers.
2) Moves all the memory providers to use the inference API and improved
the memory tests to setup the inference stack correctly and use the
embedding models

This is a merge from #589 and #598
2024-12-12 11:47:50 -08:00
Aidan Do
095125e463
[#391] Add support for json structured output for vLLM (#528)
# What does this PR do?

Addresses issue (#391)

- Adds json structured output for vLLM
- Enables structured output tests for vLLM

> Give me a recipe for Spaghetti Bolognaise:

```json
{
  "recipe_name": "Spaghetti Bolognaise",
  "preamble": "Ah, spaghetti bolognaise - the quintessential Italian dish that fills my kitchen with the aromas of childhood nostalgia. As a child, I would watch my nonna cook up a big pot of spaghetti bolognaise every Sunday, filling our small Italian household with the savory scent of simmering meat and tomatoes. The way the sauce would thicken and the spaghetti would al dente - it was love at first bite. And now, as a chef, I want to share that same love with you, so you can recreate these warm, comforting memories at home.",
  "ingredients": [
    "500g minced beef",
    "1 medium onion, finely chopped",
    "2 cloves garlic, minced",
    "1 carrot, finely chopped",
    " celery, finely chopped",
    "1 (28 oz) can whole peeled tomatoes",
    "1 tbsp tomato paste",
    "1 tsp dried basil",
    "1 tsp dried oregano",
    "1 tsp salt",
    "1/2 tsp black pepper",
    "1/2 tsp sugar",
    "1 lb spaghetti",
    "Grated Parmesan cheese, for serving",
    "Extra virgin olive oil, for serving"
  ],
  "steps": [
    "Heat a large pot over medium heat and add a generous drizzle of extra virgin olive oil.",
    "Add the chopped onion, garlic, carrot, and celery and cook until the vegetables are soft and translucent, about 5-7 minutes.",
    "Add the minced beef and cook until browned, breaking it up with a spoon as it cooks.",
    "Add the tomato paste and cook for 1-2 minutes, stirring constantly.",
    "Add the canned tomatoes, dried basil, dried oregano, salt, black pepper, and sugar. Stir well to combine.",
    "Bring the sauce to a simmer and let it cook for 20-30 minutes, stirring occasionally, until the sauce has thickened and the flavors have melded together.",
    "While the sauce cooks, bring a large pot of salted water to a boil and cook the spaghetti according to the package instructions until al dente. Reserve 1 cup of pasta water before draining the spaghetti.",
    "Add the reserved pasta water to the sauce and stir to combine.",
    "Combine the cooked spaghetti and sauce, tossing to coat the pasta evenly.",
    "Serve hot, topped with grated Parmesan cheese and a drizzle of extra virgin olive oil.",
    "Enjoy!"
  ]
}
```

Generated with Llama-3.2-3B-Instruct model - pretty good for a 3B
parameter model 👍

## Test Plan

`pytest -v -s
llama_stack/providers/tests/inference/test_text_inference.py -k
llama_3b-vllm_remote`

With the following setup:

```bash
# Environment
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export INFERENCE_PORT=8000
export VLLM_URL=http://localhost:8000/v1

# vLLM server
sudo docker run --gpus all \
    -v $STORAGE_DIR/.cache/huggingface:/root/.cache/huggingface \
    --env "HUGGING_FACE_HUB_TOKEN=$(cat ~/.cache/huggingface/token)" \
    -p 8000:$INFERENCE_PORT \
    --ipc=host \
    --net=host \
    vllm/vllm-openai:v0.6.3.post1 \
    --model $INFERENCE_MODEL

# llama-stack server
llama stack build --template remote-vllm --image-type conda && llama stack run distributions/remote-vllm/run.yaml \
  --port 5001 \
  --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
```

Results:

```
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[llama_3b-vllm_remote] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[llama_3b-vllm_remote] SKIPPED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completions_structured_output[llama_3b-vllm_remote] SKIPPED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[llama_3b-vllm_remote] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_3b-vllm_remote] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[llama_3b-vllm_remote] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[llama_3b-vllm_remote] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[llama_3b-vllm_remote] PASSED

================================ 6 passed, 2 skipped, 120 deselected, 2 warnings in 13.26s ================================
```

## Sources

- https://github.com/vllm-project/vllm/discussions/8300
- By default, vLLM uses https://github.com/dottxt-ai/outlines for
structured outputs
[[1](32e7db2536/vllm/engine/arg_utils.py (L279-L280))]

## Before submitting

[N/A] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case)

- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?

[N/A?] Updated relevant documentation. Couldn't find any relevant
documentation. Lmk if I've missed anything.

- [x] Wrote necessary unit or integration tests.
2024-12-08 15:02:51 -08:00
Dinesh Yeduguru
6395dadc2b
use logging instead of prints (#499)
# What does this PR do?

This PR moves all print statements to use logging. Things changed:
- Had to add `await start_trace("sse_generator")` to server.py to
actually get tracing working. else was not seeing any logs
- If no telemetry provider is provided in the run.yaml, we will write to
stdout
- by default, the logs are going to be in JSON, but we expose an option
to configure to output in a human readable way.
2024-11-21 11:32:53 -08:00
Ashwin Bharambe
7bfcfe80b5 Add logs (prints :/) to dump out what URL vllm / tgi is connecting to 2024-11-19 15:50:26 -08:00
Dinesh Yeduguru
0850ad656a
unregister for memory banks and remove update API (#458)
The semantics of an Update on resources is very tricky to reason about
especially for memory banks and models. The best way to go forward here
is for the user to unregister and register a new resource. We don't have
a compelling reason to support update APIs.


Tests:
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m
"chroma" --env CHROMA_HOST=localhost --env CHROMA_PORT=8000

pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m
"pgvector" --env PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env
PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0

$CONDA_PREFIX/bin/pytest -v -s -m "ollama"
llama_stack/providers/tests/inference/test_model_registration.py

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-14 17:12:11 -08:00
Dinesh Yeduguru
787e2034b7
model registration in ollama and vllm check against the available models in the provider (#446)
tests:
pytest -v -s -m "ollama"
llama_stack/providers/tests/inference/test_text_inference.py

pytest -v -s -m vllm_remote
llama_stack/providers/tests/inference/test_text_inference.py --env
VLLM_URL="http://localhost:9798/v1"

---------
2024-11-13 13:04:06 -08:00
Dinesh Yeduguru
fdff24e77a
Inference to use provider resource id to register and validate (#428)
This PR changes the way model id gets translated to the final model name
that gets passed through the provider.
Major changes include:
1) Providers are responsible for registering an object and as part of
the registration returning the object with the correct provider specific
name of the model provider_resource_id
2) To help with the common look ups different names a new ModelLookup
class is created.



Tested all inference providers including together, fireworks, vllm,
ollama, meta reference and bedrock
2024-11-12 20:02:00 -08:00
Ashwin Bharambe
afe4a53ae8 Check vLLM registration 2024-11-12 13:14:36 -08:00
Dinesh Yeduguru
ec644d3418
migrate model to Resource and new registration signature (#410)
* resource oriented object design for models

* add back llama_model field

* working tests

* register singature fix

* address feedback

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-08 16:12:57 -08:00
Ashwin Bharambe
3b54ce3499 remote::vllm now works with vision models 2024-11-06 16:07:17 -08:00
Ashwin Bharambe
994732e2e0
impls -> inline, adapters -> remote (#381) 2024-11-06 14:54:05 -08:00
Renamed from llama_stack/providers/adapters/inference/vllm/vllm.py (Browse further)