# What does this PR do?
Change Safety API from required to optional dependency, following the
established pattern used for other optional dependencies in Llama Stack.
The provider now starts successfully without Safety API configured.
Requests that explicitly include guardrails will receive a clear error
message when Safety API is unavailable.
This enables local development and testing without Safety API while
maintaining clear error messages when guardrail features are requested.
Closes#4165
Signed-off-by: Anik Bhattacharjee <anbhatta@redhat.com>
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
1. New unit tests added in
`tests/unit/providers/agents/meta_reference/test_safety_optional.py`
2. Integration tests performed with the files in
https://gist.github.com/anik120/c33cef497ec7085e1fe2164e0705b8d6
(i) test with `test_integration_no_safety_fail.yaml`:
Config WITHOUT Safety API, should fail with helpful error since
`required_safety_api` is `true` by default
```
$ uv run llama stack run test_integration_no_safety_fail.yaml 2>&1 | grep -B 5 -A 15 "ValueError.*Safety\|Safety API is
required"
File "/Users/anbhatta/go/src/github.com/llamastack/llama-stack/src/llama_stack/providers/inline/agents/meta_reference
/__init__.py", line 27, in get_provider_impl
raise ValueError(
...<9 lines>...
)
ValueError: Safety API is required but not configured.
To run without safety checks, explicitly set in your configuration:
providers:
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
require_safety_api: false
Warning: This disables all safety guardrails for this agents provider.
```
(ii) test with `test_integration_no_safety_works.yaml`
Config WITHOUT Safety API, **but** `require_safety_api=false` is
explicitly set, should succeed
```
$ uv run llama stack run test_integration_no_safety_works.yaml
INFO 2025-11-16 09:49:10,044 llama_stack.cli.stack.run:169 cli: Using run configuration:
/Users/anbhatta/go/src/github.com/llamastack/llama-stack/test_integration_no_safety_works.yaml
INFO 2025-11-16 09:49:10,052 llama_stack.cli.stack.run:228 cli: HTTPS enabled with certificates:
Key: None
Cert: None
.
.
.
INFO 2025-11-16 09:49:38,528 llama_stack.core.stack:495 core: starting registry refresh task
INFO 2025-11-16 09:49:38,534 uvicorn.error:62 uncategorized: Application startup complete.
INFO 2025-11-16 09:49:38,535 uvicorn.error:216 uncategorized: Uvicorn running on http://0.0.0.0:8321 (Press CTRL+C
```
Signed-off-by: Anik Bhattacharjee <anbhatta@redhat.com>
Signed-off-by: Anik Bhattacharjee <anbhatta@redhat.com>
# What does this PR do?
Completes #3732 by removing runtime URL transformations and requiring
users to provide full URLs in configuration. All providers now use
'base_url' consistently and respect the exact URL provided without
appending paths like /v1 or /openai/v1 at runtime.
BREAKING CHANGE: Users must update configs to include full URL paths
(e.g., http://localhost:11434/v1 instead of http://localhost:11434).
Closes#3732
## Test Plan
Existing tests should pass even with the URL changes, due to default
URLs being altered.
Add unit test to enforce URL standardization across remote inference
providers (verifies all use 'base_url' field with HttpUrl | None type)
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
since `StackRunConfig` requires certain parts of `StorageConfig`, it'd
probably make sense to template in some defaults that will "just work"
for most usecases
specifically introduce`ServerStoresConfig` defaults for inference,
metadata, conversations and prompts. We already actually funnel in
defaults for these sections ad-hoc throughout the codebase
additionally set some `backends` defaults for the `StorageConfig`.
This will alleviate some weirdness for `--providers` for run/list-deps
and also some work I have to better align our list-deps/run datatypes
---------
Signed-off-by: Charlie Doern <cdoern@redhat.com>
These primitives (used both by the Stack as well as provider
implementations) can be thought of fruitfully as internal-only APIs
which can themselves have multiple implementations. We use the new
`llama_stack_api.internal` namespace for this.
In addition: the change moves kv/sql store impls, configs, and
dependency helpers under `core/storage`
## Testing
`pytest tests/unit/utils/test_authorized_sqlstore.py`, other existing CI
# What does this PR do?
- Remove backward compatibility for authorization in mcp_headers
- Enforce authorization must use dedicated parameter
- Add validation error if Authorization found in provider_data headers
- Update test_mcp.py to use authorization parameter
- Update test_mcp_json_schema.py to use authorization parameter
- Update test_tools_with_schemas.py to use authorization parameter
- Update documentation to show the change in the authorization approach
Breaking Change:
- Authorization can no longer be passed via mcp_headers in provider_data
- Users must use the dedicated 'authorization' parameter instead
- Clear error message guides users to the new approach"
## Test Plan
CI
---------
Co-authored-by: Omar Abdelwahab <omara@fb.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
This replaces the legacy "pyopenapi + strong_typing" pipeline with a
FastAPI-backed generator that has an explicit schema registry inside
`llama_stack_api`. The key changes:
1. **New generator architecture.** FastAPI now builds the OpenAPI schema
directly from the real routes, while helper modules
(`schema_collection`, `endpoints`, `schema_transforms`, etc.)
post-process the result. The old pyopenapi stack and its strong_typing
helpers are removed entirely, so we no longer rely on fragile AST
analysis or top-level import side effects.
2. **Schema registry in `llama_stack_api`.** `schema_utils.py` keeps a
`SchemaInfo` record for every `@json_schema_type`, `register_schema`,
and dynamically created request model. The OpenAPI generator and other
tooling query this registry instead of scanning the package tree,
producing deterministic names (e.g., `{MethodName}Request`), capturing
all optional/nullable fields, and making schema discovery testable. A
new unit test covers the registry behavior.
3. **Regenerated specs + CI alignment.** All docs/Stainless specs are
regenerated from the new pipeline, so optional/nullable fields now match
reality (expect the API Conformance workflow to report breaking
changes—this PR establishes the new baseline). The workflow itself is
back to the stock oasdiff invocation so future regressions surface
normally.
*Conformance will be RED on this PR; we choose to accept the
deviations.*
## Test Plan
- `uv run pytest tests/unit/server/test_schema_registry.py`
- `uv run python -m scripts.openapi_generator.main docs/static`
---------
Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
Restores the responses unit tests that were inadvertently deleted in PR
[#4055 ](https://github.com/llamastack/llama-stack/pull/4055)
## Test Plan
I ran the unit tests that I restored. They all passed with one
exception:
tests/unit/providers/agents/meta_reference/test_openai_responses.py::test_reuse_mcp_tool_list
AttributeError: module 'llama_stack.providers.utils.tools' has no
attribute 'mcp'
It's coming from this line:
@patch("llama_stack.providers.utils.tools.mcp.list_mcp_tools")
The mcp.py module (and \_\_init\_\_.py) exists under tools. There are
some 'from mcp ....' imports (mcp package in this case) within it that
python may be interpreting as circular imports (or maybe I'm overlooking
something).
# What does this PR do?
Adding a user-facing `authorization ` parameter to MCP tool definitions
that allows users to explicitly configure credentials per MCP server,
addressing GitHub Issue #4034 in a secure manner.
## Test Plan
tests/integration/responses/test_mcp_authentication.py
---------
Co-authored-by: Omar Abdelwahab <omara@fb.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
the directory structure was src/llama-stack-api/llama_stack_api
instead it should just be src/llama_stack_api to match the other
packages.
update the structure and pyproject/linting config
---------
Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
Error out when creating vector store with unknown embedding model
Closes https://github.com/llamastack/llama-stack/issues/4047
## Test Plan
Added tests
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
Extract API definitions and provider specifications into a standalone
llama-stack-api package that can be published to PyPI independently of
the main llama-stack server.
see: https://github.com/llamastack/llama-stack/pull/2978 and
https://github.com/llamastack/llama-stack/pull/2978#issuecomment-3145115942
Motivation
External providers currently import from llama-stack, which overrides
the installed version and causes dependency conflicts. This separation
allows external providers to:
- Install only the type definitions they need without server
dependencies
- Avoid version conflicts with the installed llama-stack package
- Be versioned and released independently
This enables us to re-enable external provider module tests that were
previously blocked by these import conflicts.
Changes
- Created llama-stack-api package with minimal dependencies (pydantic,
jsonschema)
- Moved APIs, providers datatypes, strong_typing, and schema_utils
- Updated all imports from llama_stack.* to llama_stack_api.*
- Configured local editable install for development workflow
- Updated linting and type-checking configuration for both packages
Next Steps
- Publish llama-stack-api to PyPI
- Update external provider dependencies
- Re-enable external provider module tests
Pre-cursor PRs to this one:
- #4093
- #3954
- #4064
These PRs moved key pieces _out_ of the Api pkg, limiting the scope of
change here.
relates to #3237
## Test Plan
Package builds successfully and can be imported independently. All
pre-commit hooks pass with expected exclusions maintained.
---------
Signed-off-by: Charlie Doern <cdoern@redhat.com>
Fixed bug where models with No provider_model_id were incorrectly
filtered from the startup config display. The function was checking
multiple fields when it should only filter items with explicitly
disabled provider_id.
Changes:
o Modified remove_disabled_providers to only check provider_id field o
Changed condition from checking multiple fields with None to only
checking provider_id for "__disabled__", None or empty string
o Added comprehensive unit tests
Closes: #4131
Signed-off-by: Derek Higgins <derekh@redhat.com>
We would like to run all OpenAI compatibility tests using only the
openai-client library. This is most friendly for contributors since they
can run tests without needing to update the client-sdks (which is
getting easier but still a long pole.)
This is the first step in enabling that -- no using "library client" for
any of the Responses tests. This seems like a reasonable trade-off since
the usage of an embeddeble library client for Responses (or any
OpenAI-compatible) behavior seems to be not very common. To do this, we
needed to enable MCP tests (which only worked in library client mode)
for server mode.
A few changes to the storage layer to ensure we reduce unnecessary
contention arising out of our design choices (and letting the database
layer do its correct thing):
- SQL stores now share a single `SqlAlchemySqlStoreImpl` per backend,
and `kvstore_impl` caches instances per `(backend, namespace)`. This
avoids spawning multiple SQLite connections for the same file, reducing
lock contention and aligning the cache story for all backends.
- Added an async upsert API (with SQLite/Postgres dialect inserts) and
routed it through `AuthorizedSqlStore`, then switched conversations and
responses to call it. Using native `ON CONFLICT DO UPDATE` eliminates
the insert-then-update retry window that previously caused long WAL lock
retries.
### Test Plan
Existing tests, added a unit test for `upsert()`
Fixes issues in the storage system by guaranteeing immediate durability
for responses and ensuring background writers stay alive. Three related
fixes:
* Responses to the OpenAI-compatible API now write directly to
Postgres/SQLite inside the request instead of detouring through an async
queue that might never drain; this restores the expected
read-after-write behavior and removes the "response not found" races
reported by users.
* The access-control shim was stamping owner_principal/access_attributes
as SQL NULL, which Postgres interprets as non-public rows; fixing it to
use the empty-string/JSON-null pattern means conversations and responses
stored without an authenticated user stay queryable (matching SQLite).
* The inference-store queue remains for batching, but its worker tasks
now start lazily on the live event loop so server startup doesn't cancel
them—writes keep flowing even when the stack is launched via llama stack
run.
Closes#4115
### Test Plan
Added a matrix entry to test our "base" suite against Postgres as the
store.
Help users find the comprehensive integration testing docs by linking to
the record-replay documentation. This clarifies that the technical
README complements the main docs.
# What does this PR do?
- Updates `/vector_stores/{vector_store_id}/files/{file_id}/content` to
allow returning `embeddings` and `metadata` using the `extra_query`
- Updates the UI accordingly to display them.
- Update UI to support CRUD operations in the Vector Stores section and
adds a new modal exposing the functionality.
- Updates Vector Store update to fail if a user tries to update Provider
ID (which doesn't make sense to allow)
```python
In [1]: client.vector_stores.files.content(
vector_store_id=vector_store.id,
file_id=file.id,
extra_query={"include_embeddings": True, "include_metadata": True}
)
Out [1]: FileContentResponse(attributes={}, content=[Content(text='This is a test document to check if embeddings are generated properly.\n', type='text', embedding=[0.33760684728622437, ...,], chunk_metadata={'chunk_id': '62a63ae0-c202-f060-1b86-0a688995b8d3', 'document_id': 'file-27291dbc679642ac94ffac6d2810c339', 'source': None, 'created_timestamp': 1762053437, 'updated_timestamp': 1762053437, 'chunk_window': '0-13', 'chunk_tokenizer': 'DEFAULT_TIKTOKEN_TOKENIZER', 'chunk_embedding_model': 'sentence-transformers/nomic
-ai/nomic-embed-text-v1.5', 'chunk_embedding_dimension': 768, 'content_token_count': 13, 'metadata_token_count': 9}, metadata={'filename': 'test-embedding.txt', 'chunk_id': '62a63ae0-c202-f060-1b86-0a688995b8d3', 'document_id': 'file-27291dbc679642ac94ffac6d2810c339', 'token_count': 13, 'metadata_token_count': 9})], file_id='file-27291dbc679642ac94ffac6d2810c339', filename='test-embedding.txt')
```
Screenshots of UI are displayed below:
### List Vector Store with Added "Create New Vector Store"
<img width="1912" height="491" alt="Screenshot 2025-11-06 at 10 47
25 PM"
src="https://github.com/user-attachments/assets/a3a3ddd9-758d-4005-ac9c-5047f03916f3"
/>
### Create New Vector Store
<img width="1918" height="1048" alt="Screenshot 2025-11-06 at 10 47
49 PM"
src="https://github.com/user-attachments/assets/b4dc0d31-696f-4e68-b109-27915090f158"
/>
### Edit Vector Store
<img width="1916" height="1355" alt="Screenshot 2025-11-06 at 10 48
32 PM"
src="https://github.com/user-attachments/assets/ec879c63-4cf7-489f-bb1e-57ccc7931414"
/>
### Vector Store Files Contents page (with Embeddings)
<img width="1914" height="849" alt="Screenshot 2025-11-06 at 11 54
32 PM"
src="https://github.com/user-attachments/assets/3095520d-0e90-41f7-83bd-652f6c3fbf27"
/>
### Vector Store Files Contents Details page (with Embeddings)
<img width="1916" height="1221" alt="Screenshot 2025-11-06 at 11 55
00 PM"
src="https://github.com/user-attachments/assets/e71dbdc5-5b49-472b-a43a-5785f58d196c"
/>
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
Tests added for Middleware extension and Provider failures.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
Add explicit connection cleanup and shorter timeouts to OpenAI client
fixtures. Fixes CI deadlock after 25+ tests due to connection pool
exhaustion. Also adds 60s timeout to test_conversation_context_loading
as safety net.
## Test Plan
tests pass
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
Delete ~2,000 lines of dead code from the old bespoke inference API that
was replaced by OpenAI-only API. This includes removing unused type
conversion functions, dead provider methods, and event_logger.py.
Clean up imports across the codebase to remove references to deleted
types. This eliminates unnecessary
code and dependencies, helping isolate the API package as a
self-contained module.
This is the last interdependency between the .api package and "exterior"
packages, meaning that now every other package in llama stack imports
the API, not the other way around.
## Test Plan
this is a structural change, no tests needed.
---------
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# Problem
Responses API uses max_tool_calls parameter to limit the number of tool
calls that can be generated in a response. Currently, LLS implementation
of the Responses API does not support this parameter.
# What does this PR do?
This pull request adds the max_tool_calls field to the response object
definition and updates the inline provider. it also ensures that:
- the total number of calls to built-in and mcp tools do not exceed
max_tool_calls
- an error is thrown if max_tool_calls < 1 (behavior seen with the
OpenAI Responses API, but we can change this if needed)
Closes #[3563](https://github.com/llamastack/llama-stack/issues/3563)
## Test Plan
- Tested manually for change in model response w.r.t supplied
max_tool_calls field.
- Added integration tests to test invalid max_tool_calls parameter.
- Added integration tests to check max_tool_calls parameter with
built-in and function tools.
- Added integration tests to check max_tool_calls parameter in the
returned response object.
- Recorded OpenAI Responses API behavior using a sample script:
https://github.com/s-akhtar-baig/llama-stack-examples/blob/main/responses/src/max_tool_calls.py
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
Adds OCI GenAI PaaS models for openai chat completion endpoints.
## Test Plan
In an OCI tenancy with access to GenAI PaaS, perform the following
steps:
1. Ensure you have IAM policies in place to use service (check docs
included in this PR)
2. For local development, [setup OCI
cli](https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm)
and configure the CLI with your region, tenancy, and auth
[here](https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliconfigure.htm)
3. Once configured, go through llama-stack setup and run llama-stack
(uses config based auth) like:
```bash
OCI_AUTH_TYPE=config_file \
OCI_CLI_PROFILE=CHICAGO \
OCI_REGION=us-chicago-1 \
OCI_COMPARTMENT_OCID=ocid1.compartment.oc1..aaaaaaaa5...5a \
llama stack run oci
```
4. Hit the `models` endpoint to list models after server is running:
```bash
curl http://localhost:8321/v1/models | jq
...
{
"identifier": "meta.llama-4-scout-17b-16e-instruct",
"provider_resource_id": "ocid1.generativeaimodel.oc1.us-chicago-1.am...q",
"provider_id": "oci",
"type": "model",
"metadata": {
"display_name": "meta.llama-4-scout-17b-16e-instruct",
"capabilities": [
"CHAT"
],
"oci_model_id": "ocid1.generativeaimodel.oc1.us-chicago-1.a...q"
},
"model_type": "llm"
},
...
```
5. Use the "display_name" field to use the model in a
`/chat/completions` request:
```bash
# Streaming result
curl -X POST http://localhost:8321/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "meta.llama-4-scout-17b-16e-instruct",
"stream": true,
"temperature": 0.9,
"messages": [
{
"role": "system",
"content": "You are a funny comedian. You can be crass."
},
{
"role": "user",
"content": "Tell me a funny joke about programming."
}
]
}'
# Non-streaming result
curl -X POST http://localhost:8321/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "meta.llama-4-scout-17b-16e-instruct",
"stream": false,
"temperature": 0.9,
"messages": [
{
"role": "system",
"content": "You are a funny comedian. You can be crass."
},
{
"role": "user",
"content": "Tell me a funny joke about programming."
}
]
}'
```
6. Try out other models from the `/models` endpoint.
# What does this PR do?
This PR fixes a bug in LlamaStack 0.3.0 where vector stores created via
the OpenAI-compatible API (`POST /v1/vector_stores`) would fail with
`VectorStoreNotFoundError` after server restart when attempting
operations like `vector_io.insert()` or `vector_io.query()`.
The bug affected **6 vector IO providers**: `pgvector`, `sqlite_vec`,
`chroma`, `milvus`, `qdrant`, and `weaviate`.
Created with the assistance of: claude-4.5-sonnet
## Root Cause
All affected providers had a broken
`_get_and_cache_vector_store_index()` method that:
1. Did not load existing vector stores from persistent storage during
initialization
2. Attempted to use `vector_store_table` (which was either `None` or a
`KVStore` without the required `get_vector_store()` method)
3. Could not reload vector stores after server restart or cache miss
## Solution
This PR implements a consistent pattern across all 6 providers:
1. **Load vector stores during initialization** - Pre-populate the cache
from KV store on startup
2. **Fix lazy loading** - Modified `_get_and_cache_vector_store_index()`
to load directly from KV store instead of relying on
`vector_store_table`
3. **Remove broken dependency** - Eliminated reliance on the
`vector_store_table` pattern
## Testing steps
### 1.1 Configure the stack
Create or use an existing configuration with a vector IO provider.
**Example `run.yaml`:**
```yaml
vector_io_store:
- provider_id: pgvector
provider_type: remote::pgvector
config:
host: localhost
port: 5432
db: llamastack
user: llamastack
password: llamastack
inference:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config:
model: sentence-transformers/all-MiniLM-L6-v2
```
### 1.2 Start the server
```bash
llama stack run run.yaml --port 5000
```
Wait for the server to fully start. You should see:
```
INFO: Started server process
INFO: Application startup complete
```
---
## Step 2: Create a Vector Store
### 2.1 Create via API
```bash
curl -X POST http://localhost:5000/v1/vector_stores \
-H "Content-Type: application/json" \
-d '{
"name": "test-persistence-store",
"extra_body": {
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
"embedding_dimension": 384,
"provider_id": "pgvector"
}
}' | jq
```
### 2.2 Expected Response
```json
{
"id": "vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d",
"object": "vector_store",
"name": "test-persistence-store",
"status": "completed",
"created_at": 1730304000,
"file_counts": {
"total": 0,
"completed": 0,
"in_progress": 0,
"failed": 0,
"cancelled": 0
},
"usage_bytes": 0
}
```
**Save the `id` field** (e.g.,
`vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d`) — you’ll need it for the next
steps.
---
## Step 3: Insert Data (Before Restart)
### 3.1 Insert chunks into the vector store
```bash
export VS_ID="vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d"
curl -X POST http://localhost:5000/vector-io/insert \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"chunks\": [
{
\"content\": \"Python is a high-level programming language known for its readability.\",
\"metadata\": {\"source\": \"doc1\", \"page\": 1}
},
{
\"content\": \"Machine learning enables computers to learn from data without explicit programming.\",
\"metadata\": {\"source\": \"doc2\", \"page\": 1}
},
{
\"content\": \"Neural networks are inspired by biological neurons in the brain.\",
\"metadata\": {\"source\": \"doc3\", \"page\": 1}
}
]
}"
```
### 3.2 Expected Response
Status: **200 OK**
Response: *Empty or success confirmation*
---
## Step 4: Query Data (Before Restart – Baseline)
### 4.1 Query the vector store
```bash
curl -X POST http://localhost:5000/vector-io/query \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"query\": \"What is machine learning?\"
}" | jq
```
### 4.2 Expected Response
```json
{
"chunks": [
{
"content": "Machine learning enables computers to learn from data without explicit programming.",
"metadata": {"source": "doc2", "page": 1}
},
{
"content": "Neural networks are inspired by biological neurons in the brain.",
"metadata": {"source": "doc3", "page": 1}
}
],
"scores": [0.85, 0.72]
}
```
**Checkpoint:** Works correctly before restart.
---
## Step 5: Restart the Server (Critical Test)
### 5.1 Stop the server
In the terminal where it’s running:
```
Ctrl + C
```
Wait for:
```
Shutting down...
```
### 5.2 Restart the server
```bash
llama stack run run.yaml --port 5000
```
Wait for:
```
INFO: Started server process
INFO: Application startup complete
```
The vector store cache is now empty, but data should persist.
---
## Step 6: Verify Vector Store Exists (After Restart)
### 6.1 List vector stores
```bash
curl http://localhost:5000/v1/vector_stores | jq
```
### 6.2 Expected Response
```json
{
"object": "list",
"data": [
{
"id": "vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d",
"name": "test-persistence-store",
"status": "completed"
}
]
}
```
**Checkpoint:** Vector store should be listed.
---
## Step 7: Insert Data (After Restart – THE BUG TEST)
### 7.1 Insert new chunks
```bash
curl -X POST http://localhost:5000/vector-io/insert \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"chunks\": [
{
\"content\": \"This chunk was inserted AFTER the server restart.\",
\"metadata\": {\"source\": \"post-restart\", \"test\": true}
}
]
}"
```
### 7.2 Expected Results
**With Fix (Correct):**
```
Status: 200 OK
Response: Success
```
**Without Fix (Bug):**
```json
{
"detail": "VectorStoreNotFoundError: Vector Store 'vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d' not found."
}
```
**Critical Test:** If insertion succeeds, the fix works.
---
## Step 8: Query Data (After Restart – Verification)
### 8.1 Query all data
```bash
curl -X POST http://localhost:5000/vector-io/query \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"query\": \"restart\"
}" | jq
```
### 8.2 Expected Response
```json
{
"chunks": [
{
"content": "This chunk was inserted AFTER the server restart.",
"metadata": {"source": "post-restart", "test": true}
}
],
"scores": [0.95]
}
```
**Checkpoint:** Both old and new data are queryable.
---
## Step 9: Multiple Restart Test (Extra Verification)
### 9.1 Restart again
```bash
Ctrl + C
llama stack run run.yaml --port 5000
```
### 9.2 Query after restart
```bash
curl -X POST http://localhost:5000/vector-io/query \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"query\": \"programming\"
}" | jq
```
**Expected:** Works correctly across multiple restarts.
---------
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
# What does this PR do?
Resolves#4102
1. Added `web_search_2025_08_26` to the `WebSearchToolTypes` list and
the `OpenAIResponseInputToolWebSearch.type` Literal union
2. No changes needed to tool execution logic - all `web_search` types
map to the same underlying tool
3. Backward compatibility is maintained - existing `web_search`,
`web_search_preview`, and `web_search_preview_2025_03_11` types continue
to work
4. Added an integration test case using {"type":
"web_search_2025_08_26"} to verify it works correctly
5. Updated `docs/docs/providers/openai_responses_limitations.mdx` to
reflect that `web_search_2025_08_26` is now supported.
6. Removed incorrect references to `MOD1/MOD2/MOD3` (which don't exist
in the codebase)
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
---------
Signed-off-by: Aakanksha Duggal <aduggal@redhat.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This dependency has been bothering folks for a long time (cc @leseb). We
really needed it due to "library client" which is primarily used for our
tests and is not a part of the Stack server. Anyone who needs to use the
library client can certainly install `llama-stack-client` in their
environment to make that work.
Updated the notebook references to install `llama-stack-client`
additionally when setting things up.
https://github.com/llamastack/llama-stack/pull/4055 cleaned the agents
implementation but while doing so it removed some tests which actually
corresponded to the responses implementation. This PR brings those tests
and assocated recordings back.
(We should likely combine all responses tests into one suite, but that
is beyond the scope of this PR.)
o Introduces vLLM provider support to the record/replay testing
framework
o Enabling both recording and replay of vLLM API interactions alongside
existing Ollama support.
The changes enable testing of vLLM functionality. vLLM tests focus on
inference capabilities, while Ollama continues to exercise the full API
surface
including vision features.
--
This is an alternative to #3128 , using qwen3 instead of llama 3.2 1B
appears to be more capable at structure output and tool calls.
---------
Signed-off-by: Derek Higgins <derekh@redhat.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
# What does this PR do?
- when create vector store is called without chunk strategy, we actually
the strategy used so that the value is persisted instead of
strategy='None'
## Test Plan
updated tests
# What does this PR do?
1. Make telemetry tests as easy as possible for users by expanding the
`SpanStub` data class and creating the `MetricStub` dataclass as a way
to consistently marshal telemetry data in test fixtures and unmarshal
and handle it in tests.
2. Structure server and client tests to always follow the same standards
for consistent testing experience by using the `SpanStub` and
`MetricStub` data class objects.
3. Enable Metrics Testing for completions endpoint
4. Correct token metrics to use histograms instead of counts to capture
tokens per request rather than a cumulative count of tokens over the
lifecycle of the server.
## Test Plan
These are tests
# What does this PR do?
Fixes issue #3922 where `llama stack list` only showed distributions
after they were run. This PR makes the command show all available
distributions immediately on a fresh install.
Closes#3922
## Changes
- **Updated `_get_distribution_dirs()`** to discover both built-in and
built distributions:
- Built-in distributions from `src/llama_stack/distributions/` (e.g.,
starter, nvidia, dell)
- Built distributions from `~/.llama/distributions`
- **Added a "Source" column** to distinguish between "built-in" and
"built" distributions
- **Built distributions override built-in ones** with the same name
(expected behavior)
- **Updated config file detection logic** to handle both naming
conventions:
- Built-in: `build.yaml` and `run.yaml`
- Built: `{name}-build.yaml` and `{name}-run.yaml`
## Test Plan
### Unit Tests
Added comprehensive unit tests in
`tests/unit/distribution/test_stack_list.py`:
```bash
uv run pytest tests/unit/distribution/test_stack_list.py -v
```
**Result**: ✅ All 8 tests pass
- `test_builtin_distros_shown_without_running` - Verifies the core fix
for issue #3922
- `test_builtin_and_built_distros_shown_together` - Ensures both types
are shown
- `test_built_distribution_overrides_builtin` - Tests override behavior
- `test_empty_distributions` - Edge case handling
- `test_config_files_detection_builtin` - Config file detection for
built-in distros
- `test_config_files_detection_built` - Config file detection for built
distros
- `test_llamastack_prefix_stripped` - Name normalization
- `test_hidden_directories_ignored` - Filters hidden directories
### Manual Testing
**Before the fix** (simulated with empty `~/.llama/distributions`):
```bash
$ llama stack list
No stacks found in ~/.llama/distributions
```
**After the fix**:
```bash
$ llama stack list
┏━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Stack Name ┃ Source ┃ Path ┃ Build Config ┃ Run Config ┃
┡━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ ci-tests │ built-in │ /path/to/src/... │ Yes │ Yes │
│ dell │ built-in │ /path/to/src/... │ Yes │ Yes │
│ meta-reference-g… │ built-in │ /path/to/src/... │ Yes │ Yes │
│ nvidia │ built-in │ /path/to/src/... │ Yes │ Yes │
│ open-benchmark │ built-in │ /path/to/src/... │ Yes │ Yes │
│ postgres-demo │ built-in │ /path/to/src/... │ Yes │ Yes │
│ starter │ built-in │ /path/to/src/... │ Yes │ Yes │
│ starter-gpu │ built-in │ /path/to/src/... │ Yes │ Yes │
│ watsonx │ built-in │ /path/to/src/... │ Yes │ Yes │
└───────────────────┴──────────┴───────────────────┴──────────────┴────────────┘
```
**After running a distribution**:
```bash
$ llama stack run starter # Creates ~/.llama/distributions/starter
$ llama stack list
┏━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Stack Name ┃ Source ┃ Path ┃ Build Config ┃ Run Config ┃
┡━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ ... │ built-in │ ... │ Yes │ Yes │
│ starter │ built │ ~/.llama/distri… │ No │ No │
│ ... │ built-in │ ... │ Yes │ Yes │
└───────────────────┴──────────┴───────────────────┴──────────────┴────────────┘
```
Note how `starter` now shows as "built" and points to
`~/.llama/distributions`, overriding the built-in version.
## Breaking Changes
**No breaking changes** - This is a bug fix that improves user
experience with minimal risk:
- No programmatic parsing of output found in the codebase
- Table format is clearly for human consumption
- The new "Source" column helps users understand where distributions
come from
- The behavior change is exactly what users expect (seeing all available
distributions)
---------
Co-authored-by: Claude <noreply@anthropic.com>
Added a script to cleanup recordings. While doing this, moved the CI
matrix generation to a separate script so there is a single source of
truth for the matrix.
Ran the cleanup script as:
```
PYTHONPATH=. python scripts/cleanup_recordings.py
```
Also added this as part of the pre-commit workflow to ensure that the
recordings are always up to date and that no stale recordings are left
in the repo.
# What does this PR do?
These were maybe be included in the webmethod?
The unit test was pointless too since the request was never used
anywhere?
This shouldn't be in the API definition, if we never consume it.
## Test Plan
CI with pre-commit on OpenAPI spec generation.
Signed-off-by: Sébastien Han <seb@redhat.com>
- Removes the deprecated agents (sessions and turns) API that was marked
alpha in 0.3.0
- Cleans up unused imports and orphaned types after the API removal
- Removes `SessionNotFoundError` and `AgentTurnInputType` which are no
longer needed
The agents API is completely superseded by the Responses + Conversations
APIs, and the client SDK Agent class already uses those implementations.
Corresponding client-side PR:
https://github.com/llamastack/llama-stack-client-python/pull/295
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR migrates `unittest` to `pytest` in
`tests/unit/providers/nvidia/test_eval.py`.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Part of https://github.com/llamastack/llama-stack/issues/2680
Supersedes https://github.com/llamastack/llama-stack/pull/2791
Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
The llama-stack-client now uses /`v1/openai/v1/models` which returns
OpenAI-compatible model objects with 'id' and 'custom_metadata' fields
instead of the Resource-style 'identifier' field. Updated api_recorder
to handle the new endpoint and modified tests to access model metadata
appropriately. Deleted stale model recordings for re-recording.
**NOTE: CI will be red on this one since it is dependent on
https://github.com/llamastack/llama-stack-client-python/pull/291/files
landing. I verified locally that it is green.**
We need to remove `/v1/openai/v1` paths shortly. There is one trouble --
our current `/v1/openai/v1/models` endpoint provides different data than
`/v1/models`. Unfortunately our tests target the latter (llama-stack
customized) behavior. We need to get to true OpenAI compatibility.
This is step 1: adding `custom_metadata` field to `OpenAIModel` that
includes all the extra stuff we add in the native `/v1/models` response.
This can be extracted on the consumer end by look at
`__pydantic_extra__` or other similar fields.
This PR:
- Adds `custom_metadata` field to `OpenAIModel` class in
`src/llama_stack/apis/models/models.py`
- Modified `openai_list_models()` in
`src/llama_stack/core/routing_tables/models.py` to populate
custom_metadata
Next Steps
1. Update stainless client to use `/v1/openai/v1/models` instead of
`/v1/models`
2. Migrate tests to read from `custom_metadata`
3. Remove `/v1/openai/v1/` prefix entirely and consolidate to single
`/v1/models` endpoint
Without this hint Qwen3-0.6B tends to reply with the full name
and sometimes doesn't reply with the correct drafted year.
---------
Signed-off-by: Derek Higgins <derekh@redhat.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
llama stack run --providers takes a list of providers in the format of
api1=provider1,api2=provider2
this allows users to run with a simple list of providers.
given the architecture of `create_app`, this run config needs to be
written to disk. use ~/.llama/distribution/providers-run/run.yaml each
time for consistency
resolves#3956
## Test Plan
new unit tests to ensure --providers.
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
Allow filtering for v1alpha, v1beta, deprecated and v1. Backward
incompatible change since by default it only returns v1 apis now.
## Test Plan
added unit test
# What does this PR do?
Add rerank API for NVIDIA Inference Provider.
<!-- If resolving an issue, uncomment and update the line below -->
Closes#3278
## Test Plan
Unit test:
```
pytest tests/unit/providers/nvidia/test_rerank_inference.py
```
Integration test:
```
pytest -s -v tests/integration/inference/test_rerank.py --stack-config="inference=nvidia" --rerank-model=nvidia/nvidia/nv-rerankqa-mistral-4b-v3 --env NVIDIA_API_KEY="" --env NVIDIA_BASE_URL="https://integrate.api.nvidia.com"
```
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR fixes the handling of the external_providers_dir configuration
field to align with its ongoing deprecation, in favor of the provider
`module` specification approach.
It addresses the issue in #3950, where using the default provided
run.yaml config resulted in the `external_providers_dir` parameter being
set to the literal string `None`, and crashing the llama-stack server
when starting.
<!-- If resolving an issue, uncomment and update the line below -->
Closes#3950
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
- Built a new container image from `podman build . -f
containers/Containerfile --build-arg DISTRO_NAME=starter --tag
llama-stack:starter`
- Tested it locally with `podman run -it localhost/llama-stack:starter`
- Tested it on an OpenShift 4.19 cluster, deployed via the
llama-stack-k8s-operator.
Signed-off-by: Doug Edgar <dedgar@redhat.com>
… case variations
The ollama/llama3.2:3b-instruct-fp16 model returns string values with
trailing whitespace in structured JSON output. Updated test assertions
to use case-insensitive substring matching instead of exact equality.
Use .lower() for case-insensitive comparison
Check if expected value is contained in actual value (handles
whitespace)
Closes: #3996
Signed-off-by: Derek Higgins <derekh@redhat.com>