Commit graph

9 commits

Author SHA1 Message Date
Sébastien Han
2a34226727
revert: do not use MySecretStr
We don't need this if we can set it to empty string.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-09-29 09:58:41 +02:00
Sébastien Han
bc64635835
feat: load config class when doing variable substitution
When using bash style substitution env variable in distribution
template, we are processing the string and convert it to the type
associated with the provider's config class. This allows us to return
the proper type. This is crucial for api key since they are not strings
anymore but SecretStr. If the key is unset we will get an empty string
which will result in a Pydantic error like:

```
ERROR    2025-09-25 21:40:44,565 __main__:527 core::server: Error creating app: 1 validation error for AnthropicConfig
         api_key
           Input should be a valid string
             For further information visit
             https://errors.pydantic.dev/2.11/v/string_type
```

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-09-29 09:55:19 +02:00
Sébastien Han
4af141292f
chore: use empty SecretStr values as default
Better than using SecretStr | None so we centralize the null handling.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-09-29 09:55:00 +02:00
Ashwin Bharambe
9583f468f8
feat(starter)!: simplify starter distro; litellm model registry changes (#2916) 2025-07-25 15:02:04 -07:00
Jorge Piedrahita Ortiz
b2b00a216b
feat(providers): sambanova updated to use LiteLLM openai-compat (#1596)
# What does this PR do?

switch sambanova inference adaptor to LiteLLM usage to simplify
integration and solve issues with current adaptor when streaming and
tool calling, models and templates updated

## Test Plan
pytest -s -v tests/integration/inference/test_text_inference.py
--stack-config=sambanova
--text-model=sambanova/Meta-Llama-3.3-70B-Instruct

pytest -s -v tests/integration/inference/test_vision_inference.py
--stack-config=sambanova
--vision-model=sambanova/Llama-3.2-11B-Vision-Instruct
2025-05-06 16:50:22 -07:00
Ihar Hrachyshka
9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00
Ashwin Bharambe
314ee09ae3
chore: move all Llama Stack types from llama-models to llama-stack (#1098)
llama-models should have extremely minimal cruft. Its sole purpose
should be didactic -- show the simplest implementation of the llama
models and document the prompt formats, etc.

This PR is the complement to
https://github.com/meta-llama/llama-models/pull/279

## Test Plan

Ensure all `llama` CLI `model` sub-commands work:

```bash
llama model list
llama model download --model-id ...
llama model prompt-format -m ...
```

Ran tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/
LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/
LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/
```

Create a fresh venv `uv venv && source .venv/bin/activate` and run
`llama stack build --template fireworks --image-type venv` followed by
`llama stack run together --image-type venv` <-- the server runs

Also checked that the OpenAPI generator can run and there is no change
in the generated files as a result.

```bash
cd docs/openapi_generator
sh run_openapi_generator.sh
```
2025-02-14 09:10:59 -08:00
snova-edwardm
aa65610e75
Sambanova - LlamaGuard (#886)
# What does this PR do?

- Fix loading SambaNovaImpl issue
- Add LlamaGuard model support for inference

## Test Plan

Run the following unit test scripts and results

### Embedding
```
pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_embeddings.py --inference-model meta-llama/Llama-3.2-11B-Vision-Instruct --env SAMBANOVA_API_KEY={SAMBANOVA_API_KEY}
```
```
llama_stack/providers/tests/inference/test_embeddings.py::TestEmbeddings::test_embeddings[-sambanova] SKIPPED (This test is only applicable for embedding models)
llama_stack/providers/tests/inference/test_embeddings.py::TestEmbeddings::test_batch_embeddings[-sambanova] SKIPPED (This test is only applicable for embedding models)

=================================================================================================================== 2 skipped, 1 warning in 0.32s ===================================================================================================================
```

### Vision
```
pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_vision_inference.py --inference-model meta-llama/Llama-3.2-11B-Vision-Instruct --env SAMBANOVA_API_KEY={SAMBANOVA_API_KEY}
```

```
llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_non_streaming[-sambanova-image0-expected_strings0] PASSED
llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_non_streaming[-sambanova-image1-expected_strings1] PASSED
llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_streaming[-sambanova] PASSED

=================================================================================================================== 3 passed, 1 warning in 2.68s ====================================================================================================================
```

### Text
```
pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming --env SAMBANOVA_API_KEY={SAMBANOVA_API_KEY}
```

```
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[-sambanova] PASSED

=================================================================================================================== 1 passed, 1 warning in 0.46s ====================================================================================================================
```

```
pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming --env SAMBANOVA_API_KEY={SAMBANOVA_API_KEY}
```

```
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[-sambanova] PASSED

=================================================================================================================== 1 passed, 1 warning in 0.48s ====================================================================================================================
```




## Before submitting

- [] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [Y] Ran pre-commit to handle lint / formatting issues.
- [Y] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [Y] Updated relevant documentation.
- [Y] Wrote necessary unit or integration tests.
2025-01-27 15:46:30 -08:00
snova-edwardm
22dc684da6
Sambanova inference provider (#555)
# What does this PR do?

This PR adds SambaNova as one of the Provider

- Add SambaNova as a provider

## Test Plan
Test the functional command
```
pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_embeddings.py llama_stack/providers/tests/inference/test_prompt_adapter.py llama_stack/providers/tests/inference/test_text_inference.py llama_stack/providers/tests/inference/test_vision_inference.py --env SAMBANOVA_API_KEY=<sambanova-api-key>
```

Test the distribution template:
```
# Docker
LLAMA_STACK_PORT=5001
docker run -it -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  llamastack/distribution-sambanova \
  --port $LLAMA_STACK_PORT \
  --env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY

# Conda
llama stack build --template sambanova --image-type conda
llama stack run ./run.yaml \
  --port $LLAMA_STACK_PORT \
  --env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```

## Source
[SambaNova API Documentation](https://cloud.sambanova.ai/apis)

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [Y] Ran pre-commit to handle lint / formatting issues.
- [Y] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [Y] Updated relevant documentation.
- [Y ] Wrote necessary unit or integration tests.

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-01-23 12:20:28 -08:00