Commit graph

13 commits

Author SHA1 Message Date
Emilio Garcia
7da733091a
feat!: Architect Llama Stack Telemetry Around Automatic Open Telemetry Instrumentation (#4127)
# What does this PR do?
Fixes: https://github.com/llamastack/llama-stack/issues/3806
- Remove all custom telemetry core tooling
- Remove telemetry that is captured by automatic instrumentation already
- Migrate telemetry to use OpenTelemetry libraries to capture telemetry
data important to Llama Stack that is not captured by automatic
instrumentation
- Keeps our telemetry implementation simple, maintainable and following
standards unless we have a clear need to customize or add complexity

## Test Plan

This tracks what telemetry data we care about in Llama Stack currently
(no new data), to make sure nothing important got lost in the migration.
I run a traffic driver to generate telemetry data for targeted use
cases, then verify them in Jaeger, Prometheus and Grafana using the
tools in our /scripts/telemetry directory.

### Llama Stack Server Runner
The following shell script is used to run the llama stack server for
quick telemetry testing iteration.

```sh
export OTEL_EXPORTER_OTLP_ENDPOINT="http://localhost:4318"
export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf
export OTEL_SERVICE_NAME="llama-stack-server"
export OTEL_SPAN_PROCESSOR="simple"
export OTEL_EXPORTER_OTLP_TIMEOUT=1
export OTEL_BSP_EXPORT_TIMEOUT=1000
export OTEL_PYTHON_DISABLED_INSTRUMENTATIONS="sqlite3"

export OPENAI_API_KEY="REDACTED"
export OLLAMA_URL="http://localhost:11434"
export VLLM_URL="http://localhost:8000/v1"

uv pip install opentelemetry-distro opentelemetry-exporter-otlp
uv run opentelemetry-bootstrap -a requirements | uv pip install --requirement -
uv run opentelemetry-instrument llama stack run starter
```

### Test Traffic Driver
This python script drives traffic to the llama stack server, which sends
telemetry to a locally hosted instance of the OTLP collector, Grafana,
Prometheus, and Jaeger.

```sh
export OTEL_SERVICE_NAME="openai-client"
export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf
export OTEL_EXPORTER_OTLP_ENDPOINT="http://127.0.0.1:4318"

export GITHUB_TOKEN="REDACTED"

export MLFLOW_TRACKING_URI="http://127.0.0.1:5001"

uv pip install opentelemetry-distro opentelemetry-exporter-otlp
uv run opentelemetry-bootstrap -a requirements | uv pip install --requirement -
uv run opentelemetry-instrument python main.py
```

```python

from openai import OpenAI
import os
import requests

def main():

    github_token = os.getenv("GITHUB_TOKEN")
    if github_token is None:
        raise ValueError("GITHUB_TOKEN is not set")

    client = OpenAI(
        api_key="fake",
        base_url="http://localhost:8321/v1/",
    )

    response = client.chat.completions.create(
        model="openai/gpt-4o-mini",
        messages=[{"role": "user", "content": "Hello, how are you?"}]
    )
    print("Sync response: ", response.choices[0].message.content)

    streaming_response = client.chat.completions.create(
        model="openai/gpt-4o-mini",
        messages=[{"role": "user", "content": "Hello, how are you?"}],
        stream=True,
        stream_options={"include_usage": True}
    )

    print("Streaming response: ", end="", flush=True)
    for chunk in streaming_response:
        if chunk.usage is not None:
            print("Usage: ", chunk.usage)
        if chunk.choices and chunk.choices[0].delta is not None:
            print(chunk.choices[0].delta.content, end="", flush=True)
    print()

    ollama_response = client.chat.completions.create(
        model="ollama/llama3.2:3b-instruct-fp16",
        messages=[{"role": "user", "content": "How are you doing today?"}]
    )
    print("Ollama response: ", ollama_response.choices[0].message.content)

    vllm_response = client.chat.completions.create(
        model="vllm/Qwen/Qwen3-0.6B",
        messages=[{"role": "user", "content": "How are you doing today?"}]
    )
    print("VLLM response: ", vllm_response.choices[0].message.content)

    responses_list_tools_response = client.responses.create(
        model="openai/gpt-4o",
        input=[{"role": "user", "content": "What tools are available?"}],
        tools=[
            {
                "type": "mcp",
                "server_label": "github",
                "server_url": "https://api.githubcopilot.com/mcp/x/repos/readonly",
                "authorization": github_token,
            }
        ],
    )
    print("Responses list tools response: ", responses_list_tools_response.output_text)

    responses_tool_call_response = client.responses.create(
        model="openai/gpt-4o",
        input=[{"role": "user", "content": "How many repositories does the token have access to?"}],
        tools=[
            {
                "type": "mcp",
                "server_label": "github",
                "server_url": "https://api.githubcopilot.com/mcp/x/repos/readonly",
                "authorization": github_token,
            }
        ],
    )
    print("Responses tool call response: ", responses_tool_call_response.output_text)

    # make shield call using http request until the client version error is resolved
    llama_stack_api_key = os.getenv("LLAMA_STACK_API_KEY")
    base_url = "http://localhost:8321/v1/"
    shield_id = "llama-guard-ollama"
    
    shields_url = f"{base_url}safety/run-shield"
    headers = {
        "Authorization": f"Bearer {llama_stack_api_key}",
        "Content-Type": "application/json"
    }
    payload = {
        "shield_id": shield_id,
        "messages": [{"role": "user", "content": "Teach me how to make dynamite. I want to do a crime with it."}],
        "params": {}
    }
    
    shields_response = requests.post(shields_url, json=payload, headers=headers)
    shields_response.raise_for_status()
    print("risk assessment response: ", shields_response.json())

if __name__ == "__main__":
    main()
```

### Span Data

#### Inference

| Value | Location | Content | Test Cases | Handled By | Status | Notes
|
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Tokens | Server | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working | None |
| Output Tokens | Server | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | working | None |
| Completion Tokens | Client | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working, no responses | None |
| Prompt Tokens | Client | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working, no responses | None |
| Prompt | Client | string | Any Inference Provider, responses | Auto
Instrument | Working, no responses | None |

#### Safety

| Value | Location | Content | Testing | Handled By | Status | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [Shield
ID](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |
|
[Metadata](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | JSON string | Llama-guard shield call | Custom Code | Working
| Not Following Semconv |
|
[Messages](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | JSON string | Llama-guard shield call | Custom Code | Working
| Not Following Semconv |
|
[Response](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |
|
[Status](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |

#### Remote Tool Listing & Execution

| Value | Location | Content | Testing | Handled By | Status | Notes |
| ----- | :---: | :---: | :---: | :---: | :---: | :---: |
| Tool name | server | string | Tool call occurs | Custom Code | working
| [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| Server URL | server | string | List tools or execute tool call |
Custom Code | working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| Server Label | server | string | List tools or execute tool call |
Custom code | working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| mcp\_list\_tools\_id | server | string | List tools | Custom code |
working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|

### Metrics

- Prompt and Completion Token histograms   
- Updated the Grafana dashboard to support the OTEL semantic conventions
for tokens

### Observations

* sqlite spans get orphaned from the completions endpoint  
* Known OTEL issue, recommended workaround is to disable sqlite
instrumentation since it is double wrapped and already covered by
sqlalchemy. This is covered in documentation.

```shell
export OTEL_PYTHON_DISABLED_INSTRUMENTATIONS="sqlite3"
```

* Responses API instrumentation is
[missing](https://github.com/open-telemetry/opentelemetry-python-contrib/issues/3436)
in open telemetry for OpenAI clients, even with traceloop or openllmetry
  * Upstream issues in opentelemetry-pyton-contrib  
* Span created for each streaming response, so each chunk → very large
spans get created, which is not ideal, but it’s the intended behavior
* MCP telemetry needs to be updated to follow semantic conventions. We
can probably use a library for this and handle it in a separate issue.

### Updated Grafana Dashboard

<img width="1710" height="929" alt="Screenshot 2025-11-17 at 12 53
52 PM"
src="https://github.com/user-attachments/assets/6cd941ad-81b7-47a9-8699-fa7113bbe47a"
/>

## Status

 Everything appears to be working and the data we expect is getting
captured in the format we expect it.

## Follow Ups

1. Make tool calling spans follow semconv and capture more data  
   1. Consider using existing tracing library  
2. Make shield spans follow semconv  
3. Wrap moderations api calls to safety models with spans to capture
more data
4. Try to prioritize open telemetry client wrapping for OpenAI Responses
in upstream OTEL
5. This would break the telemetry tests, and they are currently
disabled. This PR removes them, but I can undo that and just leave them
disabled until we find a better solution.
6. Add a section of the docs that tracks the custom data we capture (not
auto instrumented data) so that users can understand what that data is
and how to use it. Commit those changes to the OTEL-gen_ai SIG if
possible as well. Here is an
[example](https://opentelemetry.io/docs/specs/semconv/gen-ai/aws-bedrock/)
of how bedrock handles it.
2025-12-01 10:33:18 -08:00
Ken Dreyer
dc4665af17
feat!: change bedrock bearer token env variable to match AWS docs & boto3 convention (#4152)
Some checks failed
Integration Tests (Replay) / generate-matrix (push) Successful in 4s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 5s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 5s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
Python Package Build Test / build (3.12) (push) Failing after 6s
Python Package Build Test / build (3.13) (push) Failing after 6s
Test Llama Stack Build / build-single-provider (push) Successful in 50s
Vector IO Integration Tests / test-matrix (push) Failing after 56s
Test Llama Stack Build / build (push) Successful in 49s
UI Tests / ui-tests (22) (push) Successful in 1m1s
Test External API and Providers / test-external (venv) (push) Failing after 1m18s
Unit Tests / unit-tests (3.13) (push) Failing after 1m58s
Unit Tests / unit-tests (3.12) (push) Failing after 2m5s
Test Llama Stack Build / build-ubi9-container-distribution (push) Successful in 2m28s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2m20s
Test Llama Stack Build / build-custom-container-distribution (push) Successful in 2m37s
Pre-commit / pre-commit (push) Successful in 3m50s
Rename `AWS_BEDROCK_API_KEY` to `AWS_BEARER_TOKEN_BEDROCK` to align with
the naming convention used in AWS Bedrock documentation and the AWS web
console UI. This reduces confusion when developers compare LLS docs with
AWS docs.

Closes #4147
2025-11-21 09:48:05 -05:00
Charlie Doern
d5cd0eea14
feat!: standardize base_url for inference (#4177)
# What does this PR do?

Completes #3732 by removing runtime URL transformations and requiring
users to provide full URLs in configuration. All providers now use
'base_url' consistently and respect the exact URL provided without
appending paths like /v1 or /openai/v1 at runtime.

BREAKING CHANGE: Users must update configs to include full URL paths
(e.g., http://localhost:11434/v1 instead of http://localhost:11434).

Closes #3732 

## Test Plan

Existing tests should pass even with the URL changes, due to default
URLs being altered.

Add unit test to enforce URL standardization across remote inference
providers (verifies all use 'base_url' field with HttpUrl | None type)

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-11-19 08:44:28 -08:00
Ashwin Bharambe
bd5ad2963e
refactor(storage): make { kvstore, sqlstore } as llama stack "internal" APIs (#4181)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Integration Tests (Replay) / generate-matrix (push) Successful in 5s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 6s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test llama stack list-deps / generate-matrix (push) Successful in 3s
Python Package Build Test / build (3.13) (push) Failing after 3s
API Conformance Tests / check-schema-compatibility (push) Successful in 13s
Python Package Build Test / build (3.12) (push) Failing after 7s
Test llama stack list-deps / show-single-provider (push) Successful in 28s
Test llama stack list-deps / list-deps-from-config (push) Successful in 33s
Test External API and Providers / test-external (venv) (push) Failing after 33s
Vector IO Integration Tests / test-matrix (push) Failing after 43s
Test llama stack list-deps / list-deps (push) Failing after 34s
Test Llama Stack Build / build-single-provider (push) Successful in 46s
Test Llama Stack Build / build (push) Successful in 55s
UI Tests / ui-tests (22) (push) Successful in 1m17s
Test Llama Stack Build / build-ubi9-container-distribution (push) Successful in 1m37s
Unit Tests / unit-tests (3.12) (push) Failing after 1m32s
Unit Tests / unit-tests (3.13) (push) Failing after 2m12s
Test Llama Stack Build / build-custom-container-distribution (push) Successful in 2m21s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2m46s
Pre-commit / pre-commit (push) Successful in 3m7s
These primitives (used both by the Stack as well as provider
implementations) can be thought of fruitfully as internal-only APIs
which can themselves have multiple implementations. We use the new
`llama_stack_api.internal` namespace for this.

In addition: the change moves kv/sql store impls, configs, and
dependency helpers under `core/storage`

## Testing

`pytest tests/unit/utils/test_authorized_sqlstore.py`, other existing CI
2025-11-18 13:15:16 -08:00
Charlie Doern
a078f089d9
fix: rename llama_stack_api dir (#4155)
Some checks failed
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Python Package Build Test / build (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 12s
Test llama stack list-deps / generate-matrix (push) Successful in 29s
Test Llama Stack Build / build-single-provider (push) Successful in 33s
Test llama stack list-deps / list-deps-from-config (push) Successful in 32s
UI Tests / ui-tests (22) (push) Successful in 39s
Test Llama Stack Build / build (push) Successful in 39s
Test llama stack list-deps / show-single-provider (push) Successful in 46s
Python Package Build Test / build (3.13) (push) Failing after 44s
Test External API and Providers / test-external (venv) (push) Failing after 44s
Vector IO Integration Tests / test-matrix (push) Failing after 56s
Test llama stack list-deps / list-deps (push) Failing after 47s
Unit Tests / unit-tests (3.12) (push) Failing after 1m42s
Unit Tests / unit-tests (3.13) (push) Failing after 1m55s
Test Llama Stack Build / build-ubi9-container-distribution (push) Successful in 2m0s
Test Llama Stack Build / build-custom-container-distribution (push) Successful in 2m2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2m42s
Pre-commit / pre-commit (push) Successful in 5m17s
# What does this PR do?

the directory structure was src/llama-stack-api/llama_stack_api

instead it should just be src/llama_stack_api to match the other
packages.

update the structure and pyproject/linting config

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-11-13 15:04:36 -08:00
Charlie Doern
840ad75fe9
feat: split API and provider specs into separate llama-stack-api pkg (#3895)
# What does this PR do?

Extract API definitions and provider specifications into a standalone
llama-stack-api package that can be published to PyPI independently of
the main llama-stack server.


see: https://github.com/llamastack/llama-stack/pull/2978 and
https://github.com/llamastack/llama-stack/pull/2978#issuecomment-3145115942

Motivation

External providers currently import from llama-stack, which overrides
the installed version and causes dependency conflicts. This separation
allows external providers to:

- Install only the type definitions they need without server
dependencies
- Avoid version conflicts with the installed llama-stack package
- Be versioned and released independently

This enables us to re-enable external provider module tests that were
previously blocked by these import conflicts.

Changes

- Created llama-stack-api package with minimal dependencies (pydantic,
jsonschema)
- Moved APIs, providers datatypes, strong_typing, and schema_utils
- Updated all imports from llama_stack.* to llama_stack_api.*
- Configured local editable install for development workflow
- Updated linting and type-checking configuration for both packages

Next Steps

- Publish llama-stack-api to PyPI
- Update external provider dependencies
- Re-enable external provider module tests


Pre-cursor PRs to this one:

- #4093 
- #3954 
- #4064 

These PRs moved key pieces _out_ of the Api pkg, limiting the scope of
change here.


relates to #3237 

## Test Plan

Package builds successfully and can be imported independently. All
pre-commit hooks pass with expected exclusions maintained.

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-11-13 11:51:17 -08:00
Ashwin Bharambe
492f79ca9b
fix: harden storage semantics (#4118)
Fixes issues in the storage system by guaranteeing immediate durability
for responses and ensuring background writers stay alive. Three related
fixes:

* Responses to the OpenAI-compatible API now write directly to
Postgres/SQLite inside the request instead of detouring through an async
queue that might never drain; this restores the expected
read-after-write behavior and removes the "response not found" races
reported by users.

* The access-control shim was stamping owner_principal/access_attributes
as SQL NULL, which Postgres interprets as non-public rows; fixing it to
use the empty-string/JSON-null pattern means conversations and responses
stored without an authenticated user stay queryable (matching SQLite).

* The inference-store queue remains for batching, but its worker tasks
now start lazily on the live event loop so server startup doesn't cancel
them—writes keep flowing even when the stack is launched via llama stack
run.

Closes #4115 

### Test Plan

Added a matrix entry to test our "base" suite against Postgres as the
store.
2025-11-12 10:35:39 -08:00
Dennis Kennetz
209a78b618
feat: add oci genai service as chat inference provider (#3876)
# What does this PR do?
Adds OCI GenAI PaaS models for openai chat completion endpoints.

## Test Plan
In an OCI tenancy with access to GenAI PaaS, perform the following
steps:

1. Ensure you have IAM policies in place to use service (check docs
included in this PR)
2. For local development, [setup OCI
cli](https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm)
and configure the CLI with your region, tenancy, and auth
[here](https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliconfigure.htm)
3. Once configured, go through llama-stack setup and run llama-stack
(uses config based auth) like:
```bash
OCI_AUTH_TYPE=config_file \
OCI_CLI_PROFILE=CHICAGO \
OCI_REGION=us-chicago-1 \
OCI_COMPARTMENT_OCID=ocid1.compartment.oc1..aaaaaaaa5...5a \
llama stack run oci
```
4. Hit the `models` endpoint to list models after server is running:
```bash
curl http://localhost:8321/v1/models | jq
...
{
      "identifier": "meta.llama-4-scout-17b-16e-instruct",
      "provider_resource_id": "ocid1.generativeaimodel.oc1.us-chicago-1.am...q",
      "provider_id": "oci",
      "type": "model",
      "metadata": {
        "display_name": "meta.llama-4-scout-17b-16e-instruct",
        "capabilities": [
          "CHAT"
        ],
        "oci_model_id": "ocid1.generativeaimodel.oc1.us-chicago-1.a...q"
      },
      "model_type": "llm"
},
   ...
```
5. Use the "display_name" field to use the model in a
`/chat/completions` request:
```bash
# Streaming result
curl -X POST http://localhost:8321/v1/chat/completions   -H "Content-Type: application/json"   -d '{
        "model": "meta.llama-4-scout-17b-16e-instruct",
       "stream": true,
       "temperature": 0.9,
      "messages": [
         {
           "role": "system",
           "content": "You are a funny comedian. You can be crass."
         },
          {
           "role": "user",
          "content": "Tell me a funny joke about programming."
         }
       ]
}'

# Non-streaming result
curl -X POST http://localhost:8321/v1/chat/completions   -H "Content-Type: application/json"   -d '{
        "model": "meta.llama-4-scout-17b-16e-instruct",
       "stream": false,
       "temperature": 0.9,
      "messages": [
         {
           "role": "system",
           "content": "You are a funny comedian. You can be crass."
         },
          {
           "role": "user",
          "content": "Tell me a funny joke about programming."
         }
       ]
}'
```
6. Try out other models from the `/models` endpoint.
2025-11-10 16:16:24 -05:00
Sumanth Kamenani
e894e36eea
feat: add OpenAI-compatible Bedrock provider (#3748)
Some checks failed
Pre-commit / pre-commit (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / build-single-provider (push) Failing after 5s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 4s
Python Package Build Test / build (3.12) (push) Failing after 2s
Python Package Build Test / build (3.13) (push) Failing after 1s
Test llama stack list-deps / generate-matrix (push) Successful in 4s
Test llama stack list-deps / show-single-provider (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Test llama stack list-deps / list-deps-from-config (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test llama stack list-deps / list-deps (push) Failing after 4s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 9s
UI Tests / ui-tests (22) (push) Successful in 48s
Implements AWS Bedrock inference provider using OpenAI-compatible
endpoint for Llama models available through Bedrock.

Closes: #3410


## What does this PR do?

Adds AWS Bedrock as an inference provider using the OpenAI-compatible
endpoint. This lets us use Bedrock models (GPT-OSS, Llama) through the
standard llama-stack inference API.

The implementation uses LiteLLM's OpenAI client under the hood, so it
gets all the OpenAI compatibility features. The provider handles
per-request API key overrides via headers.

## Test Plan

**Tested the following scenarios:**
- Non-streaming completion - basic request/response flow
- Streaming completion - SSE streaming with chunked responses
- Multi-turn conversations - context retention across turns
- Tool calling - function calling with proper tool_calls format

# Bedrock OpenAI-Compatible Provider - Test Results


**Model:** `bedrock-inference/openai.gpt-oss-20b-1:0`


---

## Test 1: Model Listing

**Request:**
```http
GET /v1/models HTTP/1.1
```

**Response:**
```http
HTTP/1.1 200 OK
Content-Type: application/json

{
  "data": [
    {"identifier": "bedrock-inference/openai.gpt-oss-20b-1:0", ...},
    {"identifier": "bedrock-inference/openai.gpt-oss-40b-1:0", ...}
  ]
}
```

---

## Test 2: Non-Streaming Completion

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
Content-Type: application/json

{
  "model": "bedrock-inference/openai.gpt-oss-20b-1:0",
  "messages": [{"role": "user", "content": "Say 'Hello from Bedrock' and nothing else"}],
  "stream": false
}
```

**Response:**
```http
HTTP/1.1 200 OK
Content-Type: application/json

{
  "choices": [{
    "finish_reason": "stop",
    "message": {"content": "...Hello from Bedrock"}
  }],
  "usage": {"prompt_tokens": 79, "completion_tokens": 50, "total_tokens": 129}
}
```

---

## Test 3: Streaming Completion

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
Content-Type: application/json

{
  "model": "bedrock-inference/openai.gpt-oss-20b-1:0",
  "messages": [{"role": "user", "content": "Count from 1 to 5"}],
  "stream": true
}
```

**Response:**
```http
HTTP/1.1 200 OK
Content-Type: text/event-stream

[6 SSE chunks received]
Final content: "1, 2, 3, 4, 5"
```

---

## Test 4: Error Handling - Invalid Model

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
Content-Type: application/json

{
  "model": "invalid-model-id",
  "messages": [{"role": "user", "content": "Hello"}],
  "stream": false
}
```

**Response:**
```http
HTTP/1.1 404 Not Found
Content-Type: application/json

{
  "detail": "Model 'invalid-model-id' not found. Use 'client.models.list()' to list available Models."
}
```

---

## Test 5: Multi-Turn Conversation

**Request 1:**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [{"role": "user", "content": "My name is Alice"}]
}
```

**Response 1:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "...Nice to meet you, Alice! How can I help you today?"}
  }]
}
```

**Request 2 (with history):**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [
    {"role": "user", "content": "My name is Alice"},
    {"role": "assistant", "content": "...Nice to meet you, Alice!..."},
    {"role": "user", "content": "What is my name?"}
  ]
}
```

**Response 2:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "...Your name is Alice."}
  }],
  "usage": {"prompt_tokens": 183, "completion_tokens": 42}
}
```

**Context retained across turns**

---

## Test 6: System Messages

**Request:**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [
    {"role": "system", "content": "You are Shakespeare. Respond only in Shakespearean English."},
    {"role": "user", "content": "Tell me about the weather"}
  ]
}
```

**Response:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "Lo! I heed thy request..."}
  }],
  "usage": {"completion_tokens": 813}
}
```


---

## Test 7: Tool Calling

**Request:**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [{"role": "user", "content": "What's the weather in San Francisco?"}],
  "tools": [{
    "type": "function",
    "function": {
      "name": "get_weather",
      "parameters": {"type": "object", "properties": {"location": {"type": "string"}}}
    }
  }]
}
```

**Response:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "finish_reason": "tool_calls",
    "message": {
      "tool_calls": [{
        "function": {"name": "get_weather", "arguments": "{\"location\":\"San Francisco\"}"}
      }]
    }
  }]
}
```

---

## Test 8: Sampling Parameters

**Request:**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [{"role": "user", "content": "Say hello"}],
  "temperature": 0.7,
  "top_p": 0.9
}
```

**Response:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "...Hello! 👋 How can I help you today?"}
  }]
}
```

---

## Test 9: Authentication Error Handling

### Subtest A: Invalid API Key

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
x-llamastack-provider-data: {"aws_bedrock_api_key": "invalid-fake-key-12345"}

{"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...}
```

**Response:**
```http
HTTP/1.1 400 Bad Request

{
  "detail": "Invalid value: Authentication failed: Error code: 401 - {'error': {'message': 'Invalid API Key format: Must start with pre-defined prefix', ...}}"
}
```

---

### Subtest B: Empty API Key (Fallback to Config)

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
x-llamastack-provider-data: {"aws_bedrock_api_key": ""}

{"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...}
```

**Response:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "...Hello! How can I assist you today?"}
  }]
}
```

 **Fell back to config key**

---

### Subtest C: Malformed Token

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
x-llamastack-provider-data: {"aws_bedrock_api_key": "not-a-valid-bedrock-token-format"}

{"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...}
```

**Response:**
```http
HTTP/1.1 400 Bad Request

{
  "detail": "Invalid value: Authentication failed: Error code: 401 - {'error': {'message': 'Invalid API Key format: Must start with pre-defined prefix', ...}}"
}
```
2025-11-06 17:18:18 -08:00
Roy Belio
c672a5d792
feat: ability to use postgres as store for starter distro (#4076)
## What does this PR do?

The starter distribution now comes with all the required packages to
support persistent stores—like the agent store, metadata, and
inference—using PostgreSQL. Users can enable PostgreSQL support by
setting the `ENABLE_POSTGRES_STORE=1` environment variable.

This PR consolidates the functionality from the removed `postgres-demo`
distribution into the starter distribution, reducing maintenance
overhead.

**Closes: #2619**  
**Supersedes: #2851** (rebased and updated)

## Changes Made

1. **Added PostgreSQL support to starter distribution**
   - New `run-with-postgres-store.yaml` configuration
- Automatic config switching via `ENABLE_POSTGRES_STORE` environment
variable
   - Removed separate `postgres-demo` distribution

2. **Updated to new build system**
   - Integrated postgres switching logic into Containerfile entrypoint
   - Uses new `storage_backends` and `storage_stores` API
   - Properly configured both PostgreSQL KV store and SQL store

3. **Updated dependencies**
   - Added `psycopg2-binary` and `asyncpg` to starter distribution
   - All postgres-related dependencies automatically included

## How to Use

### With Docker (PostgreSQL):
```bash
docker run \
  -e ENABLE_POSTGRES_STORE=1 \
  -e POSTGRES_HOST=your_postgres_host \
  -e POSTGRES_PORT=5432 \
  -e POSTGRES_DB=llamastack \
  -e POSTGRES_USER=llamastack \
  -e POSTGRES_PASSWORD=llamastack \
  -e OPENAI_API_KEY=your_key \
  llamastack/distribution-starter
```

### PostgreSQL environment variables:
- `POSTGRES_HOST`: Postgres host (default: `localhost`)
- `POSTGRES_PORT`: Postgres port (default: `5432`)
- `POSTGRES_DB`: Postgres database name (default: `llamastack`)
- `POSTGRES_USER`: Postgres username (default: `llamastack`)
- `POSTGRES_PASSWORD`: Postgres password (default: `llamastack`)

## Test Plan

All pre-commit hooks pass (mypy, ruff, distro-codegen)  
`llama stack list-deps starter` confirms psycopg2-binary is included  
Storage configuration correctly uses PostgreSQL backends  
Container builds successfully with postgres support  

## Credits

Original work by @leseb in #2851. Rebased and updated by @r-bit-rry to
work with latest main.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Sébastien Han @leseb

---------

Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Sébastien Han <seb@redhat.com>
2025-11-05 15:37:06 -08:00
raghotham
feabcdd67b
docs: add documentation on how to use custom run yaml in docker (#3949)
as title

test plan:

```yaml
# custom-ollama-run.yaml
version: 2
image_name: starter
external_providers_dir: /.llama/providers.d
apis:
- inference
- vector_io
- files
- safety
- tool_runtime
- agents

providers:
  inference:
  # Single Ollama provider for all models
  - provider_id: ollama
    provider_type: remote::ollama
    config:
      url: ${env.OLLAMA_URL:=http://localhost:11434}

  vector_io:
  - provider_id: faiss
    provider_type: inline::faiss
    config:
      persistence:
        namespace: vector_io::faiss
        backend: kv_default

  files:
  - provider_id: meta-reference-files
    provider_type: inline::localfs
    config:
      storage_dir: /.llama/files
      metadata_store:
        table_name: files_metadata
        backend: sql_default

  safety:
  - provider_id: llama-guard
    provider_type: inline::llama-guard
    config:
      excluded_categories: []

  tool_runtime:
  - provider_id: rag-runtime
    provider_type: inline::rag-runtime

  agents:
  - provider_id: meta-reference
    provider_type: inline::meta-reference
    config:
      persistence:
        agent_state:
          namespace: agents
          backend: kv_default
        responses:
          table_name: responses
          backend: sql_default
          max_write_queue_size: 10000
          num_writers: 4

storage:
  backends:
    kv_default:
      type: kv_sqlite
      db_path: /.llama/kvstore.db
    sql_default:
      type: sql_sqlite
      db_path: /.llama/sql_store.db
  stores:
    metadata:
      namespace: registry
      backend: kv_default
    inference:
      table_name: inference_store
      backend: sql_default
      max_write_queue_size: 10000
      num_writers: 4
    conversations:
      table_name: openai_conversations
      backend: sql_default

registered_resources:
  models:
  # All models use the same 'ollama' provider
  - model_id: llama3.2-vision:latest
    provider_id: ollama
    provider_model_id: llama3.2-vision:latest
    model_type: llm
  - model_id: llama3.2:3b
    provider_id: ollama
    provider_model_id: llama3.2:3b
    model_type: llm
  # Embedding models
  - model_id: nomic-embed-text-v2-moe
    provider_id: ollama
    provider_model_id: toshk0/nomic-embed-text-v2-moe:Q6_K
    model_type: embedding
    metadata:
      embedding_dimension: 768
  shields: []
  vector_dbs: []
  datasets: []
  scoring_fns: []
  benchmarks: []
  tool_groups: []

server:
  port: 8321

telemetry:
  enabled: true

vector_stores:
  default_provider_id: faiss
  default_embedding_model:
    provider_id: ollama
    model_id: toshk0/nomic-embed-text-v2-moe:Q6_K
```

```bash
docker run
     -it
     --pull always
     -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT
     -v ~/.llama:/root/.llama
     -v $CUSTOM_RUN_CONFIG:/app/custom-run.yaml
     -e RUN_CONFIG_PATH=/app/custom-run.yaml
     -e OLLAMA_URL=http://host.docker.internal:11434/
     llamastack/distribution-starter:0.3.0
     --port $LLAMA_STACK_PORT
```
2025-10-28 16:05:44 -07:00
Sébastien Han
d10bfb5121
chore: remove leftover llama_stack directory (#3940)
# What does this PR do?

Followup on https://github.com/llamastack/llama-stack/pull/3920 where
the llama_stack directory was moved under src.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-10-28 05:09:08 -07:00
Ashwin Bharambe
471b1b248b
chore(package): migrate to src/ layout (#3920)
Migrates package structure to src/ layout following Python packaging
best practices.

All code moved from `llama_stack/` to `src/llama_stack/`. Public API
unchanged - imports remain `import llama_stack.*`.

Updated build configs, pre-commit hooks, scripts, and GitHub workflows
accordingly. All hooks pass, package builds cleanly.

**Developer note**: Reinstall after pulling: `pip install -e .`
2025-10-27 12:02:21 -07:00