# What does this PR do?
The goal of this PR is code base modernization.
Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)
Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
In this PR, we added a new eval open benchmark IfEval based on paper
https://arxiv.org/abs/2311.07911 to measure the model capability of
instruction following.
## Test Plan
spin up a llama stack server with open-benchmark template
run `llama-stack-client --endpoint xxx eval run-benchmark
"meta-reference-ifeval" --model-id "meta-llama/Llama-3.3-70B-Instruct"
--output-dir "/home/markchen1015/" --num-examples 20` on client side and
get the eval aggregate results
# What does this PR do?
DocVQA asks model to look a a picture, then answer a question given in
text, with a text answer by text information in the picture. these
questions often require understanding of relative positions of texts
within the picture.
original dataset is defined in the "Task1" of
https://www.docvqa.org/datasets
## Test Plan
setup llama server with
```
llama stack run ./llama_stack/templates/open-benchmark/run.yaml
```
then send traffic:
```
llama-stack-client eval run-benchmark "meta-reference-docvqa" --model-id meta-llama/Llama-3.3-70B-Instruct --output-dir /tmp/gpqa --num-examples 200
```
# What does this PR do?
create a new dataset BFCL_v3 from
https://gorilla.cs.berkeley.edu/blogs/13_bfcl_v3_multi_turn.html
overall each question asks the model to perform a task described in
natural language, and additionally a set of available functions and
their schema are given for the model to choose from. the model is
required to write the function call form including function name and
parameters , to achieve the stated purpose. the results are validated
against provided ground truth, to make sure that the generated function
call and the ground truth function call are syntactically and
semantically equivalent, by checking their AST .
## Test Plan
start server by
```
llama stack run ./llama_stack/templates/ollama/run.yaml
```
then send traffic
```
llama-stack-client eval run-benchmark "bfcl" --model-id meta-llama/Llama-3.2-3B-Instruct --output-dir /tmp/gpqa --num-examples 2
```
[//]: # (## Documentation)
# What does this PR do?
It's a dict that may contain different types, as per
resolver:instantiate_provider implementation. (AFAIU it also never
contains ProviderSpecs, but *instances* of provider implementations.)
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
mypy passing if enabled checks for these modules. (See #1543)
[//]: # (## Documentation)
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
## What does this PR do?
Created a new math_500 open-benchmark based on OpenAI's [Let's Verify
Step by Step](https://arxiv.org/abs/2305.20050) paper and hugging face's
[HuggingFaceH4/MATH-500](https://huggingface.co/datasets/HuggingFaceH4/MATH-500)
dataset.
The challenge part of this benchmark is to parse the generated and
expected answer and verify if they are same. For the parsing part, we
refer to [Minerva: Solving Quantitative Reasoning Problems with Language
Models](https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/).
To simply the parse logic, as the next step, we plan to also refer to
what [simple-eval](https://github.com/openai/simple-evals) is doing,
using llm as judge to check if the generated answer matches the expected
answer or not
## Test Plan
on sever side, spin up a server with open-benchmark template `llama
stack run llama_stack/templates/open-benchamrk/run.yaml`
on client side, issue an open benchmark eval request `llama-stack-client
--endpoint xxx eval run-benchmark "meta-reference-math-500" --model-id
"meta-llama/Llama-3.3-70B-Instruct" --output-dir "/home/markchen1015/"
--num-examples 20` and get ther aggregated eval results
<img width="238" alt="Screenshot 2025-03-10 at 7 57 04 PM"
src="https://github.com/user-attachments/assets/2c9da042-3b70-470e-a7c4-69f4cc24d1fb"
/>
check the generated answer and the related scoring and they make sense
# What does this PR do?
- add ability to register a llm-as-judge scoring function with custom
judge prompts / params.
- Closes https://github.com/meta-llama/llama-stack/issues/1395
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
**Via CLI**
```
llama-stack-client scoring_functions register \
--scoring-fn-id "llm-as-judge::my-prompt" \
--description "my custom judge" \
--return-type '{"type": "string"}' \
--provider-id "llm-as-judge" \
--provider-scoring-fn-id "my-prompt" \
--params '{"type": "llm_as_judge", "judge_model": "meta-llama/Llama-3.2-3B-Instruct", "prompt_template": "always output 1.0"}'
```
<img width="1373" alt="image"
src="https://github.com/user-attachments/assets/7c6fc0ae-64fe-4581-8927-a9d8d746bd72"
/>
- Unit test will be addressed with
https://github.com/meta-llama/llama-stack/issues/1396
[//]: # (## Documentation)
as title, to let scoring function llm_as_judge_405b_simpleqa output
aggregated_results.
We can leverage categorical_count to calculate the % of correctness as
eval benchmark metrics
# What does this PR do?
- Configured ruff linter to automatically fix import sorting issues.
- Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are
applied.
- Enabled the 'I' selection to focus on import-related linting rules.
- Ran the linter, and formatted all codebase imports accordingly.
- Removed the black dep from the "dev" group since we use ruff
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
Signed-off-by: Sébastien Han <seb@redhat.com>
Lint check in main branch is failing. This fixes the lint check after we
moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We
need to move to a `ruff.toml` file as well as fixing and ignoring some
additional checks.
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
Add another header so client SDKs can identify their versions which can
be used for immediate detection of possible compatibility issues. A
semver mismatch against the wrong server should be immediately flagged
and requests should be denied.
Also change `X-LlamaStack-ProviderData` to `X-LlamaStack-Provider-Data`
since that hyphenation is better.
# What does this PR do?
- there's no value in keeping data schema validation logic in a
DataSchemaValidatorMixin
- move into data schema validation logic into standalone utils
## Test Plan
```
pytest -v -s -m llm_as_judge_scoring_together_inference scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference scoring/test_scoring.py
pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
- See https://github.com/meta-llama/llama-stack/pull/666 &
https://github.com/meta-llama/llama-stack/pull/668
- Refactor BaseScoringFn to be just a minimal interface, add new
RegistrableBaseScoring
- Refactor data schema check
- To separately evaluate retrieval component in RAG, we will have
scoring functions needing "context" column additionally.
- Refactor braintrust eval (more scoring fn added & tested in following
PR)
## Test Plan
```
pytest -v -s -m llm_as_judge_scoring_together_inference scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference scoring/test_scoring.py
```
<img width="847" alt="image"
src="https://github.com/user-attachments/assets/d099cb2d-6f9c-4bdf-9d0d-f388cf758c0f"
/>
```
pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```
<img width="850" alt="image"
src="https://github.com/user-attachments/assets/dce28fc3-0493-4d34-820a-567260873cc8"
/>
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
- braintrust scoring provider requires OPENAI_API_KEY env variable to be
set
- move this to be able to be set as request headers (e.g. like together
/ fireworks api keys)
- fixes pytest with agents dependency
## Test Plan
**E2E**
```
llama stack run
```
```yaml
scoring:
- provider_id: braintrust-0
provider_type: inline::braintrust
config: {}
```
**Client**
```python
self.client = LlamaStackClient(
base_url=os.environ.get("LLAMA_STACK_ENDPOINT", "http://localhost:5000"),
provider_data={
"openai_api_key": os.environ.get("OPENAI_API_KEY", ""),
},
)
```
- run `llama-stack-client eval run_scoring`
**Unit Test**
```
pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py
```
```
pytest -v -s -m braintrust_scoring_together_inference scoring/test_scoring.py --env OPENAI_API_KEY=$OPENAI_API_KEY
```
<img width="745" alt="image"
src="https://github.com/user-attachments/assets/68f5cdda-f6c8-496d-8b4f-1b3dabeca9c2">
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
- `schema` should not a field w/ pydantic warnings
- change `schema` to `dataset_schema`
<img width="855" alt="image"
src="https://github.com/user-attachments/assets/47cb6bb9-4be0-46a5-8701-24d24e2eaabd">
## Test Plan
```
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
This PR changes the way model id gets translated to the final model name
that gets passed through the provider.
Major changes include:
1) Providers are responsible for registering an object and as part of
the registration returning the object with the correct provider specific
name of the model provider_resource_id
2) To help with the common look ups different names a new ModelLookup
class is created.
Tested all inference providers including together, fireworks, vllm,
ollama, meta reference and bedrock