Commit graph

172 commits

Author SHA1 Message Date
Dinesh Yeduguru
c8be0bf1c9
Tools API with brave and MCP providers (#639)
This PR adds a new Tools api and adds two tool runtime providers: brave
and MCP.

Test plan:
```
curl -X POST 'http://localhost:5000/alpha/toolgroups/register' \
-H 'Content-Type: application/json' \
-d '{ "tool_group_id": "simple_tool",
  "tool_group": {
    "type": "model_context_protocol",
    "endpoint": {"uri": "http://localhost:56000/sse"}
  },
  "provider_id": "model-context-protocol"
}'

 curl -X POST 'http://localhost:5000/alpha/toolgroups/register' \
-H 'Content-Type: application/json' \
-d '{
  "tool_group_id": "search", "provider_id": "brave-search",
  "tool_group": {
    "type": "user_defined",
    "tools": [
      {
        "name": "brave_search",
        "description": "A web search tool",
        "parameters": [
          {
            "name": "query",
            "parameter_type": "string",
            "description": "The query to search"
          }
        ],
        "metadata": {},
        "tool_prompt_format": "json"
      }
    ]
  }
}'

 curl -X GET http://localhost:5000/alpha/tools/list | jq .
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   662  100   662    0     0   333k      0 --:--:-- --:--:-- --:--:--  646k
[
  {
    "identifier": "brave_search",
    "provider_resource_id": "brave_search",
    "provider_id": "brave-search",
    "type": "tool",
    "tool_group": "search",
    "description": "A web search tool",
    "parameters": [
      {
        "name": "query",
        "parameter_type": "string",
        "description": "The query to search"
      }
    ],
    "metadata": {},
    "tool_prompt_format": "json"
  },
  {
    "identifier": "fetch",
    "provider_resource_id": "fetch",
    "provider_id": "model-context-protocol",
    "type": "tool",
    "tool_group": "simple_tool",
    "description": "Fetches a website and returns its content",
    "parameters": [
      {
        "name": "url",
        "parameter_type": "string",
        "description": "URL to fetch"
      }
    ],
    "metadata": {
      "endpoint": "http://localhost:56000/sse"
    },
    "tool_prompt_format": "json"
  }
]

curl -X POST 'http://localhost:5000/alpha/tool-runtime/invoke' \
-H 'Content-Type: application/json' \
-d '{
    "tool_name": "fetch",
    "args": {
        "url": "http://google.com/"
    }
}'

 curl -X POST 'http://localhost:5000/alpha/tool-runtime/invoke' \
-H 'Content-Type: application/json' -H 'X-LlamaStack-ProviderData: {"api_key": "<KEY>"}' \
-d '{
    "tool_name": "brave_search",
    "args": {
        "query": "who is meta ceo"
    }
}'
```
2024-12-19 21:25:17 -08:00
Dinesh Yeduguru
8b8d1c1ef4
fix trace starting in library client (#655)
# What does this PR do?

Because of the way library client sets up async io boundaries, tracing
was broken with streaming. This PR fixes the tracing to start at the
right way to caputre the life time of async gen functions correctly.

Test plan:
Script ran:
https://gist.github.com/yanxi0830/f6645129e55ab12de3cd6ec71564c69e

Before: No spans returned for a session


Now: We see spans
<img width="1678" alt="Screenshot 2024-12-18 at 9 50 46 PM"
src="https://github.com/user-attachments/assets/58a3b0dd-a41c-489a-b89a-075e698a2c03"
/>
2024-12-19 16:13:52 -08:00
Ashwin Bharambe
3b4b2ea30c fix replace_env_vars bug 2024-12-18 13:48:30 -08:00
Xi Yan
75e72cf2fc model_type=llm for filering available models for playground 2024-12-17 19:42:38 -08:00
Xi Yan
af8f1b3531 model selection playground fix 2024-12-17 18:13:52 -08:00
Ashwin Bharambe
fbca51d6da Fix to conda env build script 2024-12-17 12:19:34 -08:00
Ashwin Bharambe
8de8eb03c8
Update the "InterleavedTextMedia" type (#635)
## What does this PR do?

This is a long-pending change and particularly important to get done
now.

Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.

See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.

## Test Plan

```bash
cd llama_stack/providers/tests

pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
  --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar

pytest -s -v -k fireworks agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct
```

Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:

```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py

# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
2024-12-17 11:18:31 -08:00
Ashwin Bharambe
c2f7905fa4 Fix bedrock inference impl 2024-12-16 14:22:34 -08:00
Ashwin Bharambe
eb37fba9da Small fix to library client 2024-12-16 14:08:30 -08:00
Dinesh Yeduguru
516e1a3e59
add embedding model by default to distribution templates (#617)
# What does this PR do?
Adds the sentence transformer provider and the `all-MiniLM-L6-v2`
embedding model to the default models to register in the run.yaml for
all providers.

## Test Plan
llama stack build --template together --image-type conda
llama stack run
~/.llama/distributions/llamastack-together/together-run.yaml
2024-12-13 12:48:00 -08:00
Botao Chen
aeb76390fc
[1/n] torchtune <> llama-stack integration skeleton (#540)
### Context 
This is the 1st of series PRs that integrate torchtune with llama-stack
as meta reference post-training implementation. For MVP, we will focus
on single device LoRA SFT.

Though this PR is still WIP, we want to get early feedback on the high
level design of this skeleton while still working on several details

### Scope
To limit the scope of this PR, we focus on the skeleton of the
implementation.

**What are included?**
- refine the post-training SFT apis
- skeleton of supervised_fine_tune implementation. We verified that we
can call the supervised_fine_tune API successfully from llama stack
client SDK (client side PR:
https://github.com/meta-llama/llama-stack-client-python/pull/51)
- a very basic single device LoRA training recipe based on torchtune
core components
- parity check with torchtune library and post training api unit test

**What are not includes?**
- implementation of other job management, get training artifacts apis
(separate PR)
- refactor the meta reference inference logic to support eval on
finetuned model (separate PR)
- several necessary functionality in the training recipe such as
logging, validation etc (separate PR)
- interop with telemetry for tracing and metrics logging, currently
temporarily log to local disk (separate PR)

### Testing
**e2e test**
Although we haven't added detailed testing and numerical parity check
with torchtune yet, we did a simple E2E test from client to server
1. setup server with` llama stack build --template
experimental-post-training --image-type conda` and `llama stack run
experimental-post-training `
2. On client, run `llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 post_training
supervised_fine_tune`
3. Training finishes successfully. On server side, get the finetune
checkpoints under output dir. On client side, get the job uuid

server 
<img width="1110" alt="Screenshot 2024-12-02 at 5 52 32 PM"
src="https://github.com/user-attachments/assets/b548eb90-7a9b-4edc-a858-ee237cc4361d">

client 
<img width="807" alt="Screenshot 2024-12-02 at 5 52 37 PM"
src="https://github.com/user-attachments/assets/1138ffa8-4698-40fa-b190-3d7b99646838">

**parity check**
torchtune dataloader output and llama-stack post training dataloader
output are same
<img width="1116" alt="Screenshot 2024-12-04 at 8 18 46 PM"
src="https://github.com/user-attachments/assets/5e295cdc-4c24-4ea6-82c0-ca96ef1bd6ee">

torchtune LoRA SFT and llama-stack post training LoRA SFT on alpaca
dataset with llama3.2 3B instruct model are numerical match

<img width="860" alt="Screenshot 2024-12-04 at 8 17 01 PM"
src="https://github.com/user-attachments/assets/c05cf0a8-c674-4d2e-9f0a-c5d01b2dca99">

<img width="1049" alt="Screenshot 2024-12-04 at 8 17 06 PM"
src="https://github.com/user-attachments/assets/b911d4e2-e7b1-41a9-b62c-d75529b6d443">

**unit test ** 
![Uploading Screenshot 2024-12-09 at 1.35.10 PM.png…]()
2024-12-13 11:05:35 -08:00
Dinesh Yeduguru
96e158eaac
Make embedding generation go through inference (#606)
This PR does the following:
1) adds the ability to generate embeddings in all supported inference
providers.
2) Moves all the memory providers to use the inference API and improved
the memory tests to setup the inference stack correctly and use the
embedding models

This is a merge from #589 and #598
2024-12-12 11:47:50 -08:00
Dinesh Yeduguru
47b2dc8ae3
Revert "add model type to APIs" (#605)
Reverts meta-llama/llama-stack#588
2024-12-11 10:17:54 -08:00
Dinesh Yeduguru
8e33db6015
add model type to APIs (#588)
# What does this PR do?

This PR adds a new model type field to support embedding models to be
registered. Summary of changes:
1) Each registered model by default is an llm model. 
2) User can specify an embedding model type, while registering.If
specified, the model bypass the llama model checks since embedding
models can by of any type and based on llama.
3) User needs to include the required embedding dimension in metadata.
This will be used by embedding generation to generate the requried size
of embeddings.


## Test Plan

This PR will go together will need to be merged with two follow up PRs
that will include test plans.
2024-12-11 10:16:53 -08:00
Dinesh Yeduguru
e128f2547a
add tracing back to the lib cli (#595)
Adds back all the tracing logic removed from library client. also adds
back the logging to agent_instance.
2024-12-11 08:44:20 -08:00
Dinesh Yeduguru
2e3d3a62a5 Revert "add tracing to library client (#591)"
This reverts commit bc1fddf1df.
2024-12-10 08:50:20 -08:00
Dinesh Yeduguru
16d103842a Revert "await end_trace in libcli"
This reverts commit 7615da78b8.
2024-12-10 08:47:32 -08:00
Dinesh Yeduguru
f969b561ea Revert "Disable telemetry in library client for now"
This reverts commit 176ebddf47.
2024-12-10 08:47:18 -08:00
Ashwin Bharambe
176ebddf47 Disable telemetry in library client for now 2024-12-09 22:17:25 -08:00
Ashwin Bharambe
a4d8a6009a
Fixes for library client (#587)
Library client used _server_ side types which was no bueno. The fix here
is not the completely correct fix but it is good for enough and for the
demo notebook.
2024-12-09 17:14:37 -08:00
Dinesh Yeduguru
7615da78b8 await end_trace in libcli 2024-12-09 15:54:42 -08:00
Dinesh Yeduguru
bc1fddf1df
add tracing to library client (#591) 2024-12-09 15:46:26 -08:00
Xi Yan
c699e884b5
fix telemetry import (#585)
# What does this PR do?

fix issue

<img width="921" alt="image"
src="https://github.com/user-attachments/assets/26f7499f-fae1-4c93-9de3-1ae7ee7c5144">


## Test Plan

```
llama stack run
```
<img width="657" alt="image"
src="https://github.com/user-attachments/assets/266b6ac2-f991-4b38-841c-2a610b7d9f0f">


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-09 11:18:53 -08:00
Ashwin Bharambe
a2170353af better detection for jupyter 2024-12-09 09:38:11 -08:00
Ashwin Bharambe
5335393fe3 Avoid deleting temp directory between agent turns
This brings an interesting aspect -- we need to maintain session-level
tempdir state (!) since the model was told there was some resource at a
given location that it needs to maintain
2024-12-08 22:25:37 -08:00
Ashwin Bharambe
e951852848 Miscellaneous fixes around telemetry, library client and run yaml autogen
Also add a `venv` image-type for llama stack build
2024-12-08 20:40:22 -08:00
Ashwin Bharambe
14f973a64f
Make LlamaStackLibraryClient work correctly (#581)
This PR does a few things:

- it moves "direct client" to llama-stack repo instead of being in the
llama-stack-client-python repo
- renames it to `LlamaStackLibraryClient`
- actually makes synchronous generators work 
- makes streaming and non-streaming work properly

In many ways, this PR makes things finally "work"

## Test Plan

See a `library_client_test.py` I added. This isn't really quite a test
yet but it demonstrates that this mode now works. Here's the invocation
and the response:

```
INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct python llama_stack/distribution/tests/library_client_test.py ollama
```


![image](https://github.com/user-attachments/assets/17d4e116-4457-4755-a14e-d9a668801fe0)
2024-12-07 14:59:36 -08:00
Dinesh Yeduguru
c543bc0745
Console span processor improvements (#577)
Makes the console span processor output spans in less prominent way and
highlight the logs based on severity.


![Screenshot 2024-12-06 at 11 26
46 AM](https://github.com/user-attachments/assets/c3a1b051-85db-4b71-b7a5-7bab5a26f072)
2024-12-06 11:46:16 -08:00
Ashwin Bharambe
084ec337af Small cleanup of console logs 2024-12-06 10:29:24 -08:00
Ashwin Bharambe
66d8f4ffd1 Move the telemetry util import to be more lazy 2024-12-05 21:51:47 -08:00
Xi Yan
7301403ce3
Add eval/scoring/datasetio API providers to distribution templates & UI developer guide (#564)
# What does this PR do?

- add /eval, /scoring, /datasetio API providers to distribution
templates
- regenerate build.yaml / run.yaml files
- fix `template.py` to take in list of providers instead of only first
one
- override memory provider as faiss default for all distro (as only 1
memory provider is needed to start basic flow, chromadb/pgvector need
additional setup step).
```
python llama_stack/scripts/distro_codegen.py
```

- updated README to start UI via conda builds. 

## Test Plan

```
python llama_stack/scripts/distro_codegen.py
```

- Use newly generated `run.yaml` to start server
```
llama stack run ./llama_stack/templates/together/run.yaml
```
<img width="1191" alt="image"
src="https://github.com/user-attachments/assets/62f7d179-0cd0-427c-b6e8-e087d4648f09">


#### Registration
```
❯ llama-stack-client datasets register \
--dataset-id "mmlu" \
--provider-id "huggingface" \
--url "https://huggingface.co/datasets/llamastack/evals" \
--metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \
--schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}'
❯ llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata                                ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━┩
│ mmlu       │ huggingface │ {'path': 'llamastack/evals', 'name':    │ dataset │
│            │             │ 'evals__mmlu__details', 'split':        │         │
│            │             │ 'train'}                                │         │
└────────────┴─────────────┴─────────────────────────────────────────┴─────────┘
```

```
❯ llama-stack-client datasets register \
--dataset-id "simpleqa" \
--provider-id "huggingface" \
--url "https://huggingface.co/datasets/llamastack/evals" \
--metadata '{"path": "llamastack/evals", "name": "evals__simpleqa", "split": "train"}' \
--schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}'
❯ llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata                                                      ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━┩
│ mmlu       │ huggingface │ {'path': 'llamastack/evals', 'name': 'evals__mmlu__details',  │ dataset │
│            │             │ 'split': 'train'}                                             │         │
│ simpleqa   │ huggingface │ {'path': 'llamastack/evals', 'name': 'evals__simpleqa',       │ dataset │
│            │             │ 'split': 'train'}                                             │         │
└────────────┴─────────────┴───────────────────────────────────────────────────────────────┴─────────┘
```

```
❯ llama-stack-client eval_tasks register \
> --eval-task-id meta-reference-mmlu \
> --provider-id meta-reference \
> --dataset-id mmlu \
> --scoring-functions basic::regex_parser_multiple_choice_answer
❯ llama-stack-client eval_tasks register \
--eval-task-id meta-reference-simpleqa \
--provider-id meta-reference \
--dataset-id simpleqa \
--scoring-functions llm-as-judge::405b-simpleqa
❯ llama-stack-client eval_tasks list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┓
┃ dataset_id ┃ identifier       ┃ metadata ┃ provider_id    ┃ provider_resour… ┃ scoring_functio… ┃ type      ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━┩
│ mmlu       │ meta-reference-… │ {}       │ meta-reference │ meta-reference-… │ ['basic::regex_… │ eval_task │
│ simpleqa   │ meta-reference-… │ {}       │ meta-reference │ meta-reference-… │ ['llm-as-judge:… │ eval_task │
└────────────┴──────────────────┴──────────┴────────────────┴──────────────────┴──────────────────┴───────────┘
```

#### Test with UI
```
streamlit run app.py
```

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-05 16:29:32 -08:00
Dalton Flanagan
6eb5f2a865 precommit 2024-12-05 16:36:26 -05:00
dltn
703a20c3bc cprint in print_pip_install_help 2024-12-05 13:21:38 -08:00
Dinesh Yeduguru
fcd6449519
Telemetry API redesign (#525)
# What does this PR do?
Change the Telemetry API to be able to support different use cases like
returning traces for the UI and ability to export for Evals.
Other changes:
* Add a new trace_protocol decorator to decorate all our API methods so
that any call to them will automatically get traced across all impls.
* There is some issue with the decorator pattern of span creation when
using async generators, where there are multiple yields with in the same
context. I think its much more explicit by using the explicit context
manager pattern using with. I moved the span creations in agent instance
to be using with
* Inject session id at the turn level, which should quickly give us all
traces across turns for a given session

Addresses #509

## Test Plan
```
llama stack run /Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml
PYTHONPATH=. python -m examples.agents.rag_with_memory_bank localhost 5000


 curl -X POST 'http://localhost:5000/alpha/telemetry/query-traces' \
-H 'Content-Type: application/json' \
-d '{
  "attribute_filters": [
    {
      "key": "session_id",
      "op": "eq",
      "value": "dd667b87-ca4b-4d30-9265-5a0de318fc65" }],
  "limit": 100,
  "offset": 0,
  "order_by": ["start_time"]
}' | jq .
[
  {
    "trace_id": "6902f54b83b4b48be18a6f422b13e16f",
    "root_span_id": "5f37b85543afc15a",
    "start_time": "2024-12-04T08:08:30.501587",
    "end_time": "2024-12-04T08:08:36.026463"
  },
  {
    "trace_id": "92227dac84c0615ed741be393813fb5f",
    "root_span_id": "af7c5bb46665c2c8",
    "start_time": "2024-12-04T08:08:36.031170",
    "end_time": "2024-12-04T08:08:41.693301"
  },
  {
    "trace_id": "7d578a6edac62f204ab479fba82f77b6",
    "root_span_id": "1d935e3362676896",
    "start_time": "2024-12-04T08:08:41.695204",
    "end_time": "2024-12-04T08:08:47.228016"
  },
  {
    "trace_id": "dbd767d76991bc816f9f078907dc9ff2",
    "root_span_id": "f5a7ee76683b9602",
    "start_time": "2024-12-04T08:08:47.234578",
    "end_time": "2024-12-04T08:08:53.189412"
  }
]


curl -X POST 'http://localhost:5000/alpha/telemetry/get-span-tree' \
-H 'Content-Type: application/json' \
-d '{ "span_id" : "6cceb4b48a156913", "max_depth": 2, "attributes_to_return": ["input"] }' | jq .
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   875  100   790  100    85  18462   1986 --:--:-- --:--:-- --:--:-- 20833
{
  "span_id": "6cceb4b48a156913",
  "trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
  "parent_span_id": "892a66d726c7f990",
  "name": "retrieve_rag_context",
  "start_time": "2024-12-04T09:28:21.781995",
  "end_time": "2024-12-04T09:28:21.913352",
  "attributes": {
    "input": [
      "{\"role\":\"system\",\"content\":\"You are a helpful assistant\"}",
      "{\"role\":\"user\",\"content\":\"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.\",\"context\":null}"
    ]
  },
  "children": [
    {
      "span_id": "1a2df181854064a8",
      "trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
      "parent_span_id": "6cceb4b48a156913",
      "name": "MemoryRouter.query_documents",
      "start_time": "2024-12-04T09:28:21.787620",
      "end_time": "2024-12-04T09:28:21.906512",
      "attributes": {
        "input": null
      },
      "children": [],
      "status": "ok"
    }
  ],
  "status": "ok"
}

```

<img width="1677" alt="Screenshot 2024-12-04 at 9 42 56 AM"
src="https://github.com/user-attachments/assets/4d3cea93-05ce-415a-93d9-4b1628631bf8">
2024-12-04 11:22:45 -08:00
Xi Yan
16769256b7
[llama stack ui] add native eval & inspect distro & playground pages (#541)
# What does this PR do?

New Pages Added: 

- (1) Inspect Distro
- (2) Evaluations: 
  - (a) native evaluations (including generation)
  - (b) application evaluations (no generation, scoring only)
- (3) Playground: 
  - (a) chat
  - (b) RAG  

## Test Plan

```
streamlit run app.py
```

#### Playground

https://github.com/user-attachments/assets/6ca617e8-32ca-49b2-9774-185020ff5204

#### Inspect

https://github.com/user-attachments/assets/01d52b2d-92af-4e3a-b623-a9b8ba22ba99


#### Evaluations (Generation + Scoring)

https://github.com/user-attachments/assets/345845c7-2a2b-4095-960a-9ae40f6a93cf

#### Evaluations (Scoring)

https://github.com/user-attachments/assets/6cc1659f-eba4-49ca-a0a5-7c243557b4f5


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-04 09:47:09 -08:00
Sixian Yi
caf1dac114
unregister API for dataset (#507)
# What does this PR do?

1) Implement `unregister_dataset(dataset_id)` API in both llama stack
routing table and providers: It removes {dataset_id -> Dataset} mapping
from routing table and removes the dataset_id references in provider as
well (ex. for huggingface, we use a KV store to store the dataset id =>
dataset. we delete it during unregistering as well)

2) expose the datasets/unregister_dataset api endpoint 

## Test Plan

**Unit test:** 

`
pytest llama_stack/providers/tests/datasetio/test_datasetio.py -m
"huggingface" -v -s --tb=short --disable-warnings
`

**Test on endpoint:**
tested llama stack using an ollama distribution template:
1) start an ollama server 
2) Start a llama stack server with the default ollama distribution
config + dataset/datasetsio APIs + datasetio provider
```
---- .../ollama-run.yaml
...
apis:
- agents
- inference
- memory
- safety
- telemetry
- datasetio
- datasets
providers:
  datasetio:
  - provider_id: localfs
    provider_type: inline::localfs
    config: {}
...
```
   saw that the new API showed up in startup script
   
  ```
Serving API datasets
 GET /alpha/datasets/get
 GET /alpha/datasets/list
 POST /alpha/datasets/register
 POST /alpha/datasets/unregister
```

3) query `/alpha/datasets/unregister` through curl (since we have not implemented unregister api in llama stack client)

```
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets register
--dataset-id sixian --url
https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst
--schema {}
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩
│ sixian     │ localfs     │ {}       │ dataset │
└────────────┴─────────────┴──────────┴─────────┘
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets register
--dataset-id sixian2 --url
https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst
--schema {}
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩
│ sixian     │ localfs     │ {}       │ dataset │
│ sixian2    │ localfs     │ {}       │ dataset │
└────────────┴─────────────┴──────────┴─────────┘
(base) sxyi@sxyi-mbp llama-stack % curl
http://localhost:5001/alpha/datasets/unregister \
-H "Content-Type: application/json" \
-d '{"dataset_id": "sixian"}'
null%

(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩
│ sixian2    │ localfs     │ {}       │ dataset │
└────────────┴─────────────┴──────────┴─────────┘
(base) sxyi@sxyi-mbp llama-stack % curl
http://localhost:5001/alpha/datasets/unregister \
-H "Content-Type: application/json" \
-d '{"dataset_id": "sixian2"}'
null%

(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
```

## Sources


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-03 21:18:30 -08:00
Xi Yan
b1a63df8cd
move playground ui to llama-stack repo (#536)
# What does this PR do?

- Move Llama Stack Playground UI to llama-stack repo under
llama_stack/distribution
- Original PR in llama-stack-apps:
https://github.com/meta-llama/llama-stack-apps/pull/127

## Test Plan
```
cd llama-stack/llama_stack/distribution/ui
streamlit run app.py
```


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-26 22:04:21 -08:00
Xi Yan
50cc165077
fixes tests & move braintrust api_keys to request headers (#535)
# What does this PR do?

- braintrust scoring provider requires OPENAI_API_KEY env variable to be
set
- move this to be able to be set as request headers (e.g. like together
/ fireworks api keys)
- fixes pytest with agents dependency

## Test Plan

**E2E**
```
llama stack run 
```
```yaml
scoring:
  - provider_id: braintrust-0
    provider_type: inline::braintrust
    config: {}
```

**Client**
```python
self.client = LlamaStackClient(
    base_url=os.environ.get("LLAMA_STACK_ENDPOINT", "http://localhost:5000"),
    provider_data={
        "openai_api_key": os.environ.get("OPENAI_API_KEY", ""),
    },
)
```
- run `llama-stack-client eval run_scoring`

**Unit Test**
```
pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py
```

```
pytest -v -s -m braintrust_scoring_together_inference scoring/test_scoring.py --env OPENAI_API_KEY=$OPENAI_API_KEY
```
<img width="745" alt="image"
src="https://github.com/user-attachments/assets/68f5cdda-f6c8-496d-8b4f-1b3dabeca9c2">

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-26 13:11:21 -08:00
Ashwin Bharambe
34be07e0df Ensure model_local_dir does not mangle "C:\" on Windows 2024-11-24 14:18:59 -08:00
Dinesh Yeduguru
501e7c9d64
Fix opentelemetry adapter (#510)
# What does this PR do?

This PR fixes some of the issues with our telemetry setup to enable logs
to be delivered to opentelemetry and jaeger. Main fixes
1) Updates the open telemetry provider to use the latest oltp exports
instead of deprected ones.
2) Adds a tracing middleware, which injects traces into each HTTP
request that the server recieves and this is going to be the root trace.
Previously, we did this in the create_dynamic_route method, which is
actually not the actual exectuion flow, but more of a config and this
causes the traces to end prematurely. Through middleware, we plugin the
trace start and end at the right location.
3) We manage our own methods to create traces and spans and this does
not fit well with Opentelemetry SDK since it does not support provide a
way to take in traces and spans that are already created. it expects us
to use the SDK to create them. For now, I have a hacky approach of just
maintaining a map from our internal telemetry objects to the open
telemetry specfic ones. This is not the ideal solution. I will explore
other ways to get around this issue. for now, to have something that
works, i am going to keep this as is.

Addresses: #509
2024-11-22 18:18:11 -08:00
dltn
eaf4fbef75 another print -> log fix 2024-11-22 13:35:34 -08:00
dltn
302a0145e5 we do want prints in print_pip_install_help 2024-11-22 13:32:54 -08:00
Dinesh Yeduguru
6395dadc2b
use logging instead of prints (#499)
# What does this PR do?

This PR moves all print statements to use logging. Things changed:
- Had to add `await start_trace("sse_generator")` to server.py to
actually get tracing working. else was not seeing any logs
- If no telemetry provider is provided in the run.yaml, we will write to
stdout
- by default, the logs are going to be in JSON, but we expose an option
to configure to output in a human readable way.
2024-11-21 11:32:53 -08:00
Ashwin Bharambe
681322731b
Make run yaml optional so dockers can start with just --env (#492)
When running with dockers, the idea is that users be able to work purely
with the `llama stack` CLI. They should not need to know about the
existence of any YAMLs unless they need to. This PR enables it.

The docker command now doesn't need to volume mount a yaml and can
simply be:
```bash
docker run -v ~/.llama/:/root/.llama \
  --env A=a --env B=b
```

## Test Plan

Check with conda first (no regressions):
```bash
LLAMA_STACK_DIR=. llama stack build --template ollama
llama stack run ollama --port 5001

# server starts up correctly
```

Check with docker
```bash
# build the docker
LLAMA_STACK_DIR=. llama stack build --template ollama --image-type docker

export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"

docker run -it  -p 5001:5001 \
  -v ~/.llama:/root/.llama \
  -v $PWD:/app/llama-stack-source \
  localhost/distribution-ollama:dev \
  --port 5001 \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env OLLAMA_URL=http://host.docker.internal:11434
```

Note that volume mounting to `/app/llama-stack-source` is only needed
because we built the docker with uncommitted source code.
2024-11-20 13:11:40 -08:00
Dinesh Yeduguru
1d8d0593af
register with provider even if present in stack (#491)
# What does this PR do?

Remove a check which skips provider registration if a resource is
already in stack registry. Since we do not reconcile state with
provider, register should always call into provider's register endpoint.


## Test Plan
```
# stack run
╰─❯ llama stack run /Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml

#register memory bank
❯ llama-stack-client memory_banks register your_memory_bank_name --type vector --provider-id inline::faiss-0

Memory Bank Configuration:
{
│   'memory_bank_type': 'vector',
│   'chunk_size_in_tokens': 512,
│   'embedding_model': 'all-MiniLM-L6-v2',
│   'overlap_size_in_tokens': 64
}

#register again
❯ llama-stack-client memory_banks register your_memory_bank_name --type vector --provider-id inline::faiss-0

Memory Bank Configuration:
{
│   'memory_bank_type': 'vector',
│   'chunk_size_in_tokens': 512,
│   'embedding_model': 'all-MiniLM-L6-v2',
│   'overlap_size_in_tokens': 64
}
```
2024-11-20 11:05:50 -08:00
Ashwin Bharambe
e605d57fb7 use API version in "remote" stack client 2024-11-19 15:59:47 -08:00
Ashwin Bharambe
887ccc2143 Ensure llama-stack-client is installed in the container with TEST_PYPI 2024-11-19 15:21:10 -08:00
Ashwin Bharambe
394519d68a Add llama-stack-client as a legitimate dependency for llama-stack 2024-11-19 11:44:35 -08:00
Ashwin Bharambe
c46b462c22 Updates to docker build script 2024-11-19 11:36:53 -08:00
Ashwin Bharambe
5e4ac1b7c1 Make sure server code uses version prefixed routes 2024-11-19 09:15:05 -08:00