# What does this PR do?
The goal of this PR is code base modernization.
Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)
Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Add support for the temperature to the responses API
## Test Plan
Manually tested simple case
unit tests added for simple case and tool calls
Signed-off-by: Derek Higgins <derekh@redhat.com>
# What does this PR do?
Replaced `${env.OTEL_SERVICE_NAME:\u200B}` and similar variants with
properly formatted `${env.OTEL_SERVICE_NAME:}` across all YAML templates
and TelemetryConfig. This prevents silent parsing issues and ensures
consistent environment variable resolution.
Slipped in https://github.com/meta-llama/llama-stack/pull/2058
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
The telemetry provider configs is the only one who leverages the env var
`SQLITE_DB_PATH` for pointing to persistent data in the respective
templates, whereas usually `SQLITE_STORE_DIR` is used.
This PR modifies the `sqlite_db_path` in various telemetry configuration
files to use the environment variable `SQLITE_STORE_DIR` instead of
`SQLITE_DB_PATH`. This change ensures that _only_ the SQLITE_STORE_DIR
needs to be set to point to a different persistence location for
providers.
All references to `SQLITE_DB_PATH` have been removed.
Another improvement could be to move `sqlite_db_path` to `db_path` in
the telemetry provider config, to align with the other provider
configurations. That could be done by another PR (if wanted).
# What does this PR do?
This provides an initial [OpenAI Responses
API](https://platform.openai.com/docs/api-reference/responses)
implementation. The API is not yet complete, and this is more a
proof-of-concept to show how we can store responses in our key-value
stores and use them to support the Responses API concepts like
`previous_response_id`.
## Test Plan
I've added a new
`tests/integration/openai_responses/test_openai_responses.py` as part of
a test-driven development for this new API. I'm only testing this
locally with the remote-vllm provider for now, but it should work with
any of our inference providers since the only API it requires out of the
inference provider is the `openai_chat_completion` endpoint.
```
VLLM_URL="http://localhost:8000/v1" \
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack build --template remote-vllm --image-type venv --run
```
```
LLAMA_STACK_CONFIG="http://localhost:8321" \
python -m pytest -v \
tests/integration/openai_responses/test_openai_responses.py \
--text-model "meta-llama/Llama-3.2-3B-Instruct"
```
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
This PR addresses the content dominance problem that frequently arises
with multiple models when executing queries with the RAG tool. When the
retrieved content is too large, it disproportionately influences the
generation process, causing the model to ignore the original question
and to provide meaningless comments on the retrieved information
instead.
This situation is especially common with agentic RAG, which is the
standard way of doing RAG in Llama Stack, since directly manipulating
the prompt combining the query with the retrieved content is not
possible.
This PR appends a grounding message to the results returned by the
knowledge search tool, reminding the model about the original query and
the purpose of the inference call. This makes the problem significantly
less likely to occur.
## Test Plan
Running the following script before the fix demonstrates the content
dominance problem where the model insists to comment on the retrieved
content and refuses to address the question.
Running the script after the fix results in getting the correct answer.
```
import os
import uuid
from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient
# the server endpoint
LLAMA_STACK_SERVER_URL = "http://localhost:8321"
# inference settings
MODEL_ID = ""meta-llama/Llama-3.1-8B-Instruct"
SYSTEM_PROMPT = "You are a helpful assistant. "
# RAG settings
VECTOR_DB_EMBEDDING_MODEL = "all-MiniLM-L6-v2"
VECTOR_DB_EMBEDDING_DIMENSION = 384
VECTOR_DB_CHUNK_SIZE = 512
# initialize the server connection
client = LlamaStackClient(base_url=os.environ.get("LLAMA_STACK_ENDPOINT", LLAMA_STACK_SERVER_URL))
# init the RAG retrieval parameters
vector_db_id = f"test_vector_db_{uuid.uuid4()}"
vector_providers = [
provider for provider in client.providers.list() if provider.api == "vector_io"
]
vector_provider_to_use = vector_providers[0]
# define and register the document collection to be used
client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=VECTOR_DB_EMBEDDING_MODEL,
embedding_dimension=VECTOR_DB_EMBEDDING_DIMENSION,
provider_id=vector_provider_to_use.provider_id,
)
# ingest the documents into the newly created document collection
urls = [
("https://www.openshift.guide/openshift-guide-screen.pdf", "application/pdf"),
]
documents = [
RAGDocument(
document_id=f"num-{i}",
content=url,
mime_type=url_type,
metadata={},
)
for i, (url, url_type) in enumerate(urls)
]
client.tool_runtime.rag_tool.insert(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=VECTOR_DB_CHUNK_SIZE,
)
queries = [
"How to install OpenShift?",
]
# initializing the agent
agent = Agent(
client,
model=MODEL_ID,
instructions=SYSTEM_PROMPT,
# we make our agent aware of the RAG tool by including builtin::rag/knowledge_search in the list of tools
tools=[
dict(
name="builtin::rag/knowledge_search",
args={
"vector_db_ids": [vector_db_id], # list of IDs of document collections to consider during retrieval
},
)
],
)
for prompt in queries:
print(f"User> {prompt}")
# create a new turn with a new session ID for each prompt
response = agent.create_turn(
messages=[
{
"role": "user",
"content": prompt,
}
],
session_id=agent.create_session(f"rag-session_{uuid.uuid4()}")
)
# print the response, including tool calls output
for log in AgentEventLogger().log(response):
print(log.content, end='')
```
Test plan:
python tests/verifications/generate_report.py --providers
fireworks,together,llama_meta_ref,openai
Co-authored-by: Eric Huang <erichuang@fb.com>
# What does this PR do?
Allow users to name an agent and use the name in telemetry instead of
relying on randomly generated agent_ids. This improves the developer
experience by making it easier to find specific agents in telemetry
logs.
Closes#1832
## Test Plan
- Added tests to verify the agent name is properly stored and retrieved
- Ran `uv run -- pytest -v
tests/integration/telemetry/test_telemetry.py::test_agent_name_filtering`
from the root of the project and made sure the tests pass
- Ran `uv run -- pytest -v
tests/integration/telemetry/test_telemetry.py::test_agent_query_spans`
to verify existing code without agent names still works correctly
## Use Example
```
agent = Agent(
llama_stack_client,
model=text_model_id,
name="CustomerSupportAgent", # New parameter
instructions="You are a helpful customer support assistant"
)
session_id = agent.create_session(f"test-session-{uuid4()}")
```
## Implementation Notes
- Agent names are optional string parameters with no additional
validation
- Names are not required to be unique - multiple agents can have the
same name
- The agent_id remains the unique identifier for an agent
---------
Co-authored-by: raghotham <raghotham@gmail.com>
# What does this PR do?
Now a separate thread is started to execute training jobs. Training
requests now return job ID before the job completes. (Which fixes API
timeouts for any jobs that take longer than a minute.)
Note: the scheduler code is meant to be spun out in the future into a
common provider service that can be reused for different APIs and
providers. It is also expected to back the /jobs API proposed here:
https://github.com/meta-llama/llama-stack/discussions/1238
Hence its somewhat generalized form which is expected to simplify its
adoption elsewhere in the future.
Note: this patch doesn't attempt to implement missing APIs (e.g. cancel
or job removal). This work will belong to follow-up PRs.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Added unit tests for the scheduler module. For the API coverage, did
manual testing and was able to run a training cycle on GPU. The initial
call returned job ID before the training completed, as (now) expected.
Artifacts are returned as expected.
```
JobArtifactsResponse(checkpoints=[{'identifier': 'meta-llama/Llama-3.2-3B-Instruct-sft-0', 'created_at': '2025-03-07T22:45:19.892714', 'epoch': 0, 'post_training_job_id': 'test-job2ee77104-2fd3-4a4e-84cf-f83f8b8f1f50', 'path': '/home/ec2-user/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0', 'training_metrics': None}], job_uuid='test-job2ee77104-2fd3-4a4e-84cf-f83f8b8f1f50')
```
The integration test is currently disabled for the provider. I will look
into how it can be enabled in a different PR / issue context.
[//]: # (## Documentation)
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
TLDR: Changes needed to get 100% passing tests for OpenAI API
verification tests when run against Llama Stack with the `together`,
`fireworks`, and `openai` providers. And `groq` is better than before,
at 88% passing.
This cleans up the OpenAI API support for image message types
(specifically `image_url` types) and handling of the `response_format`
chat completion parameter. Both of these required a few more Pydantic
model definitions in our Inference API, just to move from the
not-quite-right stubs I had in place to something fleshed out to match
the actual OpenAI API specs.
As part of testing this, I also found and fixed a bug in the litellm
implementation of openai_completion and openai_chat_completion, so the
providers based on those should actually be working now.
The method `prepare_openai_completion_params` in
`llama_stack/providers/utils/inference/openai_compat.py` was improved to
actually recursively clean up input parameters, including handling of
lists, dicts, and dumping of Pydantic models to dicts. These changes
were required to get to 100% passing tests on the OpenAI API
verification against the `openai` provider.
With the above, the together.ai provider was passing as well as it is
without Llama Stack. But, since we have Llama Stack in the middle, I
took the opportunity to clean up the together.ai provider so that it now
also passes the OpenAI API spec tests we have at 100%. That means
together.ai is now passing our verification test better when using an
OpenAI client talking to Llama Stack than it is when hitting together.ai
directly, without Llama Stack in the middle.
And, another round of work for Fireworks to improve translation of
incoming OpenAI chat completion requests to Llama Stack chat completion
requests gets the fireworks provider passing at 100%. The server-side
fireworks.ai tool calling support with OpenAI chat completions and Llama
4 models isn't great yet, but by pointing the OpenAI clients at Llama
Stack's API we can clean things up and get everything working as
expected for Llama 4 models.
## Test Plan
### OpenAI API Verification Tests
I ran the OpenAI API verification tests as below and 100% of the tests
passed.
First, start a Llama Stack server that runs the `openai` provider with
the `gpt-4o` and `gpt-4o-mini` models deployed. There's not a template
setup to do this out of the box, so I added a
`tests/verifications/openai-api-verification-run.yaml` to do this.
First, ensure you have the necessary API key environment variables set:
```
export TOGETHER_API_KEY="..."
export FIREWORKS_API_KEY="..."
export OPENAI_API_KEY="..."
```
Then, run a Llama Stack server that serves up all these providers:
```
llama stack run \
--image-type venv \
tests/verifications/openai-api-verification-run.yaml
```
Finally, generate a new verification report against all these providers,
both with and without the Llama Stack server in the middle.
```
python tests/verifications/generate_report.py \
--run-tests \
--provider \
together \
fireworks \
groq \
openai \
together-llama-stack \
fireworks-llama-stack \
groq-llama-stack \
openai-llama-stack
```
You'll see that most of the configurations with Llama Stack in the
middle now pass at 100%, even though some of them do not pass at 100%
when hitting the backend provider's API directly with an OpenAI client.
### OpenAI Completion Integration Tests with vLLM:
I also ran the smaller `test_openai_completion.py` test suite (that's
not yet merged with the verification tests) on multiple of the
providers, since I had to adjust the method signature of
openai_chat_completion a bit and thus had to touch lots of these
providers to match. Here's the tests I ran there, all passing:
```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```
### OpenAI Completion Integration Tests with ollama
```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```
### OpenAI Completion Integration Tests with together.ai
```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" llama stack build --template together --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct-Turbo"
```
### OpenAI Completion Integration Tests with fireworks.ai
```
INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" llama stack build --template fireworks --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.1-8B-Instruct"
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
This PR adds two methods to the Inference API:
- `batch_completion`
- `batch_chat_completion`
The motivation is for evaluations targeting a local inference engine
(like meta-reference or vllm) where batch APIs provide for a substantial
amount of acceleration.
Why did I not add this to `Api.batch_inference` though? That just
resulted in a _lot_ more book-keeping given the structure of Llama
Stack. Had I done that, I would have needed to create a notion of a
"batch model" resource, setup routing based on that, etc. This does not
sound ideal.
So what's the future of the batch inference API? I am not sure. Maybe we
can keep it for true _asynchronous_ execution. So you can submit
requests, and it can return a Job instance, etc.
## Test Plan
Run meta-reference-gpu using:
```bash
export INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct
export INFERENCE_CHECKPOINT_DIR=../checkpoints/Llama-4-Scout-17B-16E-Instruct-20250331210000
export MODEL_PARALLEL_SIZE=4
export MAX_BATCH_SIZE=32
export MAX_SEQ_LEN=6144
LLAMA_MODELS_DEBUG=1 llama stack run meta-reference-gpu
```
Then run the batch inference test case.
# What does this PR do?
Today, supervised_fine_tune itself and the `TrainingConfig` class have a
bunch of required fields that a provider implementation might not need.
for example, if a provider wants to handle hyperparameters in its
configuration as well as any type of dataset retrieval, optimizer or
LoRA config, a user will still need to pass in a virtually empty
`DataConfig`, `OptimizerConfig` and `AlgorithmConfig` in some cases.
Many of these fields are intended to work specifically with llama models
and knobs intended for customizing inline.
Adding remote post_training providers will require loosening these
arguments, or forcing users to pass in empty objects to satisfy the
pydantic models.
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
This stubs in some OpenAI server-side compatibility with three new
endpoints:
/v1/openai/v1/models
/v1/openai/v1/completions
/v1/openai/v1/chat/completions
This gives common inference apps using OpenAI clients the ability to
talk to Llama Stack using an endpoint like
http://localhost:8321/v1/openai/v1 .
The two "v1" instances in there isn't awesome, but the thinking is that
Llama Stack's API is v1 and then our OpenAI compatibility layer is
compatible with OpenAI V1. And, some OpenAI clients implicitly assume
the URL ends with "v1", so this gives maximum compatibility.
The openai models endpoint is implemented in the routing layer, and just
returns all the models Llama Stack knows about.
The following providers should be working with the new OpenAI
completions and chat/completions API:
* remote::anthropic (untested)
* remote::cerebras-openai-compat (untested)
* remote::fireworks (tested)
* remote::fireworks-openai-compat (untested)
* remote::gemini (untested)
* remote::groq-openai-compat (untested)
* remote::nvidia (tested)
* remote::ollama (tested)
* remote::openai (untested)
* remote::passthrough (untested)
* remote::sambanova-openai-compat (untested)
* remote::together (tested)
* remote::together-openai-compat (untested)
* remote::vllm (tested)
The goal to support this for every inference provider - proxying
directly to the provider's OpenAI endpoint for OpenAI-compatible
providers. For providers that don't have an OpenAI-compatible API, we'll
add a mixin to translate incoming OpenAI requests to Llama Stack
inference requests and translate the Llama Stack inference responses to
OpenAI responses.
This is related to #1817 but is a bit larger in scope than just chat
completions, as I have real use-cases that need the older completions
API as well.
## Test Plan
### vLLM
```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```
### ollama
```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```
## Documentation
Run a Llama Stack distribution that uses one of the providers mentioned
in the list above. Then, use your favorite OpenAI client to send
completion or chat completion requests with the base_url set to
http://localhost:8321/v1/openai/v1 . Replace "localhost:8321" with the
host and port of your Llama Stack server, if different.
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
Move around bits. This makes the copies from llama-models _much_ easier
to maintain and ensures we don't entangle meta-reference specific
tidbits into llama-models code even by accident.
Also, kills the meta-reference-quantized-gpu distro and rolls
quantization deps into meta-reference-gpu.
## Test Plan
```
LLAMA_MODELS_DEBUG=1 \
with-proxy llama stack run meta-reference-gpu \
--env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct \
--env INFERENCE_CHECKPOINT_DIR=<DIR> \
--env MODEL_PARALLEL_SIZE=4 \
--env QUANTIZATION_TYPE=fp8_mixed
```
Start a server with and without quantization. Point integration tests to
it using:
```
pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config http://localhost:8321 --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
Running full Tool Calling required some updates to work e2e.
- Remove `python_start` and `python_end` tags
- Tool Call messages and Tool Resposne messages should end with
`<|eom|>`
- System prompt needed updates
```
You are a helpful assisant who can can answer general questions or invoke tools when necessary.
In addition to tool calls, you should also augment your responses by using the tool outputs.
```
### Test Plan
- Start server with meta-reference
```
LLAMA_STACK_DISABLE_VERSION_CHECK=1 LLAMA_MODELS_DEBUG=1 INFERENCE_MODEL=meta-llama/$MODEL llama stack run meta-reference-gpu
```
- Added **NEW** tests with 5 test cases for multi-turn tool calls
```
pytest -s -v --stack-config http://localhost:8321 tests/integration/inference/test_text_inference.py --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
- Also verified all vision and agent tests pass
# What does this PR do?
- **chore: mypy for strong_typing**
- **chore: mypy for remote::vllm**
- **chore: mypy for remote::ollama**
- **chore: mypy for providers.datatype**
---------
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Don't return list for runtime tools. Instead return Response object for
pagination and consistency with other APIs.
---------
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Move pagination logic from LocalFS and HuggingFace implementations into
a common helper function to ensure consistent pagination behavior across
providers. This reduces code duplication and centralizes pagination
logic in one place.
## Test Plan
Run this script:
```
from llama_stack_client import LlamaStackClient
# Initialize the client
client = LlamaStackClient(base_url="http://localhost:8321")
# Register a dataset
response = client.datasets.register(
purpose="eval/messages-answer", # or "eval/question-answer" or "post-training/messages"
source={"type": "uri", "uri": "huggingface://datasets/llamastack/simpleqa?split=train"},
dataset_id="my_dataset", # optional, will be auto-generated if not provided
metadata={"description": "My evaluation dataset"}, # optional
)
# Verify the dataset was registered by listing all datasets
datasets = client.datasets.list()
print(f"Registered datasets: {[d.identifier for d in datasets]}")
# You can then access the data using the datasetio API
# rows = client.datasets.iterrows(dataset_id="my_dataset", start_index=1, limit=2)
rows = client.datasets.iterrows(dataset_id="my_dataset")
print(f"Data: {rows.data}")
```
And play with `start_index` and `limit`.
[//]: # (## Documentation)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
https://github.com/meta-llama/llama-stack/pull/1828 removed
__root_span__ attribute which is still needed
## Test Plan
added telemetry integration test
LLAMA_STACK_CONFIG=http://localhost:5001 pytest -s -v
tests/integration/telemetry --safety-shield meta-llama/Llama-Guard-3-8B
--text-model accounts/fireworks/models/llama-v3p3-70b-instruct
# What does this PR do?
This PR updates the sqlite-vec database calls to be non-blocking. Note
that each operation creates a new connection, which incurs some
performance overhead but is reasonable given [SQLite's threading and
connections constraints](https://www.sqlite.org/threadsafe.html).
Summary of changes:
- Refactored `SQLiteVecIndex` class to store database path instead of
connection object
- Added `_create_sqlite_connection()` helper function to create
connections on demand
- Ensured proper connection closure in all database operations
- Fixed test fixtures to use a file-based SQLite database for
thread-safety
- Updated the `SQLiteVecVectorIOAdapter` class to handle per-operation
connections
This PR helps chip away at
https://github.com/meta-llama/llama-stack/issues/1489
## Test Plan
sqlite-vec unit tests passed locally as well as a test script using the
client as a library.
## Misc
FYI @varshaprasad96 @kevincogan
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
**What**
Instead of adhoc creating a vectordb and chunking when documents ae sent
as an attachment to agent turn, we directly pass raw text from document
into messages to model for user context, and let model perform
summarization directly.
This removes the magic behaviour, and yields better performance than
existing approach.
**Improved Performance**
- RAG lifecycle notebook
- Model: 0.3 factuality score
- (+ websearch) Agent: 0.44 factuality score
- (+ vector db) Agent: 0.3 factuality score
- (+ raw context) Agent: 0.6 factuality score
Closes https://github.com/meta-llama/llama-stack/issues/1478
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
- [NEW] added section in RAG lifecycle notebook shows better performance
<img width="840" alt="image"
src="https://github.com/user-attachments/assets/a0c4e816-809a-41c0-9124-89825983e3f5"
/>
[//]: # (## Documentation)
# What does this PR do?
1) Uses otel compatible id generation for stack
2) Stack starts returning trace id info in the header of response
3) We inject the same trace id that we have into otel in order to force
it to use our trace ids.
## Test Plan
```
curl -i --request POST \
--url http://localhost:8321/v1/inference/chat-completion \
--header 'content-type: application/json' \
--data '{
"model_id": "meta-llama/Llama-3.1-70B-Instruct",
"messages": [
{
"role": "user",
"content": {
"type": "text",
"text": "where do humans live"
}
}
],
"stream": false
}'
HTTP/1.1 200 OK
date: Fri, 21 Mar 2025 21:51:19 GMT
server: uvicorn
content-length: 1712
content-type: application/json
x-trace-id: 595101ede31ece116ebe35b26d67e8cf
{"metrics":[{"metric":"prompt_tokens","value":10,"unit":null},{"metric":"completion_tokens","value":320,"unit":null},{"metric":"total_tokens","value":330,"unit":null}],"completion_message":{"role":"assistant","content":"Humans live on the planet Earth, specifically on its landmasses and in its oceans. Here's a breakdown of where humans live:\n\n1. **Continents:** Humans inhabit all seven continents:\n\t* Africa\n\t* Antarctica ( temporary residents, mostly scientists and researchers)\n\t* Asia\n\t* Australia\n\t* Europe\n\t* North America\n\t* South America\n2. **Countries:** There are 196 countries recognized by the United Nations, and humans live in almost all of them.\n3. **Cities and towns:** Many humans live in urban areas, such as cities and towns, which are often located near coastlines, rivers, or other bodies of water.\n4. **Rural areas:** Some humans live in rural areas, such as villages, farms, and countryside.\n5. **Islands:** Humans inhabit many islands around the world, including tropical islands, island nations, and islands in the Arctic and Antarctic regions.\n6. **Underwater habitats:** A few humans live in underwater habitats, such as research stations and submarines.\n7. **Space:** A small number of humans have lived in space, including astronauts on the International Space Station and those who have visited the Moon.\n\nIn terms of specific environments, humans live in a wide range of ecosystems, including:\n\n* Deserts\n* Forests\n* Grasslands\n* Mountains\n* Oceans\n* Rivers\n* Tundras\n* Wetlands\n\nOverall, humans are incredibly adaptable and can be found living in almost every corner of the globe.","stop_reason":"end_of_turn","tool_calls":[]},"logprobs":null}
```
Same trace id in Jaeger and sqlite:


# What does this PR do?
## Test Plan
LLAMA_STACK_CONFIG=dev pytest -s -v
tests/integration/agents/test_agents.py::test_custom_tool
--safety-shield meta-llama/Llama-Guard-3-8B --text-model
accounts/fireworks/models/llama-v3p1-8b-instruct
and verify trace in jaeger UI
https://llama-stack.readthedocs.io/en/latest/building_applications/telemetry.html#
# What does this PR do?
- We cannot directly return a literal type
> Note: this is not final jobs API change
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
<img width="837" alt="image"
src="https://github.com/user-attachments/assets/18a17561-35f9-443d-987d-54afdd6ff40c"
/>
[//]: # (## Documentation)
# What does this PR do?
Since we now start recording and exporting metrics, we no longer can use
single OTEL endpoint to export both traces and metrics. This PR adds two
sinks: OTEL_TRACE and OTEL_METRIC to be able to selectively enable the
exporters.
## Test Plan
Start server with OTEL_TRACE as sink and verify traces show up in jaeger

# What does this PR do?
Clean up mypy violations for inline::{telemetry,tool_runtime,vector_io}.
This also makes API accept a tool call result without any content (like
RAG tool already may produce).
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
In this PR, we added a new eval open benchmark IfEval based on paper
https://arxiv.org/abs/2311.07911 to measure the model capability of
instruction following.
## Test Plan
spin up a llama stack server with open-benchmark template
run `llama-stack-client --endpoint xxx eval run-benchmark
"meta-reference-ifeval" --model-id "meta-llama/Llama-3.3-70B-Instruct"
--output-dir "/home/markchen1015/" --num-examples 20` on client side and
get the eval aggregate results
# What does this PR do?
DocVQA asks model to look a a picture, then answer a question given in
text, with a text answer by text information in the picture. these
questions often require understanding of relative positions of texts
within the picture.
original dataset is defined in the "Task1" of
https://www.docvqa.org/datasets
## Test Plan
setup llama server with
```
llama stack run ./llama_stack/templates/open-benchmark/run.yaml
```
then send traffic:
```
llama-stack-client eval run-benchmark "meta-reference-docvqa" --model-id meta-llama/Llama-3.3-70B-Instruct --output-dir /tmp/gpqa --num-examples 200
```
These block on io reads which in turn block the
server. Move them to their own thread.
Closes: #1697
# What does this PR do?
To avoid blocking the main eventloop, updates datasetio/localfs to load
data in a seperate thread
Signed-off-by: Derek Higgins <derekh@redhat.com>
### What does this PR do?
Currently, `ToolCall.arguments` is a `Dict[str, RecursiveType]`.
However, on the client SDK side -- the `RecursiveType` gets deserialized
into a number ( both int and float get collapsed ) and hence when params
are `int` they get converted to float which might break client side
tools that might be doing type checking.
Closes: https://github.com/meta-llama/llama-stack/issues/1683
### Test Plan
Stainless changes --
https://github.com/meta-llama/llama-stack-client-python/pull/204
```
pytest -s -v --stack-config=fireworks tests/integration/agents/test_agents.py --text-model meta-llama/Llama-3.1-8B-Instruct
```
# What does this PR do?
Fixes a bunch of violations.
Note: this patch touches all files but post_training.py that will be
significantly changed by #1437, hence leaving it out of the picture for
now.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
Testing with https://github.com/meta-llama/llama-stack/pull/1543
Also checked that GPU training works with the change:
```
INFO: ::1:53316 - "POST /v1/post-training/supervised-fine-tune HTTP/1.1" 200 OK
INFO: ::1:53316 - "GET /v1/post-training/job/status?job_uuid=test-jobb5ca2d84-d541-42f8-883b-762828b4c0e7 HTTP/1.1" 200 OK
INFO: ::1:53316 - "GET /v1/post-training/job/artifacts?job_uuid=test-jobb5ca2d84-d541-42f8-883b-762828b4c0e7 HTTP/1.1" 200 OK
21:24:01.161 [END] /v1/post-training/supervised-fine-tune [StatusCode.OK] (32526.75ms)
21:23:28.769 [DEBUG] Setting manual seed to local seed 3918872849. Local seed is seed + rank = 3918872849 + 0
21:23:28.996 [INFO] Identified model_type = Llama3_2. Ignoring output.weight in checkpoint in favor of the tok_embedding.weight tied weights.
21:23:29.933 [INFO] Memory stats after model init:
GPU peak memory allocation: 6.05 GiB
GPU peak memory reserved: 6.10 GiB
GPU peak memory active: 6.05 GiB
21:23:29.934 [INFO] Model is initialized with precision torch.bfloat16.
21:23:30.115 [INFO] Tokenizer is initialized.
21:23:30.118 [INFO] Optimizer is initialized.
21:23:30.119 [INFO] Loss is initialized.
21:23:30.896 [INFO] Dataset and Sampler are initialized.
21:23:30.898 [INFO] Learning rate scheduler is initialized.
21:23:31.618 [INFO] Memory stats after model init:
GPU peak memory allocation: 6.24 GiB
GPU peak memory reserved: 6.30 GiB
GPU peak memory active: 6.24 GiB
21:23:31.620 [INFO] Starting checkpoint save...
21:23:59.428 [INFO] Model checkpoint of size 6.43 GB saved to /home/ec2-user/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/consolidated.00.pth
21:23:59.445 [INFO] Adapter checkpoint of size 0.00 GB saved to /home/ec2-user/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/adapter/adapter.pth
```
[//]: # (## Documentation)
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Made code interpreter tool call to be async such that its non blocking
## Test Plan
pytest -s -v tests/integration/agents/test_agents.py
--stack-config=together --text-model=meta-llama/Llama-3.3-70B-Instruct
<img width="1693" alt="image"
src="https://github.com/user-attachments/assets/42520bb6-7acf-42d5-b71f-b35ca149d722"
/>
[//]: # (## Documentation)
Co-authored-by: sarthakdeshpande <sarthak.deshpande@engati.com>
# What does this PR do?
Removed local execution option from the remote Qdrant provider and
introduced an explicit inline provider for the embedded execution.
Updated the ollama template to include this option: this part can be
reverted in case we don't want to have two default `vector_io`
providers.
(Closes#1082)
## Test Plan
Build and run an ollama distro:
```bash
llama stack build --template ollama --image-type conda
llama stack run --image-type conda ollama
```
Run one of the sample ingestionapplicatinos like
[rag_with_vector_db.py](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/rag_with_vector_db.py),
but replace this line:
```py
selected_vector_provider = vector_providers[0]
```
with the following, to use the `qdrant` provider:
```py
selected_vector_provider = vector_providers[1]
```
After running the test code, verify the timestamp of the Qdrant store:
```bash
% ls -ltr ~/.llama/distributions/ollama/qdrant.db/collection/test_vector_db_*
total 784
-rw-r--r--@ 1 dmartino staff 401408 Feb 26 10:07 storage.sqlite
```
[//]: # (## Documentation)
---------
Signed-off-by: Daniele Martinoli <dmartino@redhat.com>
Co-authored-by: Francisco Arceo <farceo@redhat.com>
# Summary:
Includes fixes to get test_agents working with openAI model, e.g. tool
parsing and message conversion
# Test Plan:
```
LLAMA_STACK_CONFIG=dev pytest -s -v tests/integration/agents/test_agents.py --safety-shield meta-llama/Llama-Guard-3-8B --text-model openai/gpt-4o-mini
```
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with
[ReviewStack](https://reviewstack.dev/meta-llama/llama-stack/pull/1550).
* #1556
* __->__ #1550