Commit graph

14 commits

Author SHA1 Message Date
Dinesh Yeduguru
7fb2c1c48d
More idiomatic REST API (#765)
# What does this PR do?

This PR changes our API to follow more idiomatic REST API approaches of
having paths being resources and methods indicating the action being
performed.

Changes made to generator:
1) removed the prefix check of "get" as its not required and is actually
needed for other method types too
2) removed _ check on path since variables can have "_"



## Test Plan

LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v
tests/client-sdk/agents/test_agents.py
2025-01-15 13:20:09 -08:00
Botao Chen
52a21ce78f
Free up memory after post training finishes (#770)
## context 
Currently, the GPU memory will be continuously occupied after the
training finishes. In this PR, we explicitly delete the reference and
clean up the memory after training finishes.

## test
Before the change, after training a llama 3.2 3B model, >6GB GPU memory
is still occupied

After the change, after training a llama 3.2 3B model, the GPU memory
drops to ~1GB

<img width="156" alt="Screenshot 2025-01-14 at 6 05 17 PM"
src="https://github.com/user-attachments/assets/45d212b1-a651-49f3-aad9-1c0a27fcebcf"
/>
2025-01-14 19:19:38 -08:00
Botao Chen
25c1d9b037
[post training] define llama stack post training dataset format (#717)
## context
In this PR, we defined 2 llama stack dataset formats (instruct, dialog)

- For instruct dataset format, the column schema will be
[chat_completion_input, expected_answer], which is consistent with the
eval data format. This dataset format is the abstract of single turn QA
style post training data
- For dialog dataset format, the column schema will be [dialog], which
is a list of user messages and assistant messages that interleave
together. During training, the whole list will be the model input and
the loss is calculated on assistant messages only. This dataset format
is the abstract of multi turn chat style post training data

## changes
- defined the 2 llama stack dataset formats
- an adapter to convert llama stack dataset format to torchtune dataset
format
- move dataset format validation to post training level instead of
torchtune level since it's not specific to torchtune
- add localfs as datasetio provider


## test 
instruct format
- use https://huggingface.co/datasets/llamastack/evals as dataset and
the training works as expected
<img width="1443" alt="Screenshot 2025-01-09 at 5 15 14 PM"
src="https://github.com/user-attachments/assets/2c37a936-c67a-4726-90e0-23fa0ba7000f"
/>

- use my generated local dataset and the training works as expected

<img width="1617" alt="Screenshot 2025-01-09 at 5 19 11 PM"
src="https://github.com/user-attachments/assets/0bdccbbf-bac2-472a-a365-15213e49bbfa"
/>


dialog format
- use my generated local dataset and the training works as expected
<img width="1588" alt="Screenshot 2025-01-09 at 5 23 16 PM"
src="https://github.com/user-attachments/assets/893915ba-41a3-4d51-948b-e872060ecede"
/>
2025-01-14 12:48:49 -08:00
Botao Chen
747683a8a2
Add init files to post training folders (#711)
add init files to post training folders to make pkg build pick up those
files

## Test
WIP colab notebook
https://colab.research.google.com/drive/1K4Q2wZq232_Bpy2ud4zL9aRxvCWAwyQs?usp=sharing
to sharecase the post training APIs
2025-01-13 20:19:18 -08:00
Botao Chen
e86271aeac
support llama3.1 8B instruct in post training (#698)
## What does this PR do? 
- Change to support llama3.1 8B instruct model other than llama3 8B
model as llama3.1 8B instruct model is a better model to finetune on top
of
- Make the copy files logic in checkpointer safer in case the file be
copied doesn't exist in source path

## test
issue a post training request from client and verify training works as
expect
<img width="1101" alt="Screenshot 2025-01-02 at 12 18 45 PM"
src="https://github.com/user-attachments/assets/47cc4df9-3edc-4afd-b5dd-abe1f039f1ed"
/>

<img width="782" alt="Screenshot 2025-01-02 at 12 18 52 PM"
src="https://github.com/user-attachments/assets/b9435274-ef1d-4570-bd8e-0880c3a4b2e9"
/>
2025-01-03 17:33:05 -08:00
Botao Chen
4320b0ebb2
[Post training] make validation steps configurable (#715)
## what does this PR do? 
The current code hardcode the validation steps to run (forgot to change
it after testing). in this PR, we make it configurable by training
config

## test 
On client side, issue a post training request with 20 validation steps,
server side logging shows that it runs 20 validation steps successfully
<img width="1128" alt="Screenshot 2025-01-02 at 8 21 06 PM"
src="https://github.com/user-attachments/assets/7a757516-c6ba-41d4-85c5-361a80ecf46e"
/>
2025-01-03 08:43:24 -08:00
Botao Chen
d9f75cc98f
Import from the right path (#708)
Import BaseModel and Field from pydantic
2025-01-02 13:15:31 -08:00
Botao Chen
750604c7af
[Post Training] Fix missing import (#705)
## context
Post training apis are broken after the import * refactor
https://github.com/meta-llama/llama-stack/pull/689. This PR is adding
the missing import back

## Test
Issue a post training request from client and the training finishes
successfully

<img width="1101" alt="Screenshot 2025-01-02 at 12 18 45 PM"
src="https://github.com/user-attachments/assets/8c781459-f340-4021-85e1-fc68b1dcb8c8"
/>

<img width="782" alt="Screenshot 2025-01-02 at 12 18 52 PM"
src="https://github.com/user-attachments/assets/14b04b7d-e5c7-4662-8fa6-748446ad3511"
/>
2025-01-02 13:08:20 -08:00
Xi Yan
3c72c034e6
[remove import *] clean up import *'s (#689)
# What does this PR do?

- as title, cleaning up `import *`'s
- upgrade tests to make them more robust to bad model outputs
- remove import *'s in llama_stack/apis/* (skip __init__ modules)
<img width="465" alt="image"
src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2"
/>

- run `sh run_openapi_generator.sh`, no types gets affected

## Test Plan

### Providers Tests

**agents**
```
pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8
```

**inference**
```bash
# meta-reference
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

# together
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py 
```

**safety**
```
pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B
```

**memory**
```
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
```

**scoring**
```
pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
```


**datasetio**
```
pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py
pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py
```


**eval**
```
pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py
```

### Client-SDK Tests
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk
```

### llama-stack-apps
```
PORT=5000
LOCALHOST=localhost

python -m examples.agents.hello $LOCALHOST $PORT
python -m examples.agents.inflation $LOCALHOST $PORT
python -m examples.agents.podcast_transcript $LOCALHOST $PORT
python -m examples.agents.rag_as_attachments $LOCALHOST $PORT
python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT
python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT
python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT

# Vision model
python -m examples.interior_design_assistant.app
python -m examples.agent_store.app $LOCALHOST $PORT
```

### CLI
```
which llama
llama model prompt-format -m Llama3.2-11B-Vision-Instruct
llama model list
llama stack list-apis
llama stack list-providers inference

llama stack build --template ollama --image-type conda
```

### Distributions Tests
**ollama**
```
llama stack build --template ollama --image-type conda
ollama run llama3.2:1b-instruct-fp16
llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
```

**fireworks**
```
llama stack build --template fireworks --image-type conda
llama stack run ./llama_stack/templates/fireworks/run.yaml
```

**together**
```
llama stack build --template together --image-type conda
llama stack run ./llama_stack/templates/together/run.yaml
```

**tgi**
```
llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-27 15:45:44 -08:00
Botao Chen
bae197c37e
Fix post training apis broken by torchtune release (#674)
There is a torchtune release this morning
https://github.com/pytorch/torchtune/releases/tag/v0.5.0 and breaks post
training apis

## test 
spinning up server and the post training works again after the fix 
<img width="1314" alt="Screenshot 2024-12-20 at 4 08 54 PM"
src="https://github.com/user-attachments/assets/dfae724d-ebf0-4846-9715-096efa060cee"
/>


## Note
We need to think hard of how to avoid this happen again and have a fast
follow up on this after holidays
2024-12-20 16:12:02 -08:00
Botao Chen
06cb0c837e
[torchtune integration] post training + eval (#670)
## What does this PR do?

- Add related Apis in experimental-post-training template to enable eval
on the finetuned checkpoint in the template
- A small bug fix on meta reference eval
- A small error handle improvement on post training 


## Test Plan
From client side issued an E2E post training request
https://github.com/meta-llama/llama-stack-client-python/pull/70 and get
eval results successfully

<img width="1315" alt="Screenshot 2024-12-20 at 12 06 59 PM"
src="https://github.com/user-attachments/assets/a09bd524-59ae-490c-908f-2e36ccf27c0a"
/>
2024-12-20 13:43:13 -08:00
Botao Chen
20383bfea5
[3/n][torchtune integration] add validation logic (#600)
## What does this PR do?
- add validation logic in SFT recipe (validation loss and perplexity)
- add progress bar in both training and validation to better track the
progress on server side (eval has the similar logic)


## Test Plan
validation logic shows up in the Checkpoint training_metric part  
<img width="799" alt="Screenshot 2024-12-12 at 3 21 52 PM"
src="https://github.com/user-attachments/assets/36330ffe-0555-4b2d-93f0-9487dfdf7b4e"
/>

progress bar shows up as 
<img width="476" alt="Screenshot 2024-12-12 at 3 38 11 PM"
src="https://github.com/user-attachments/assets/77306fa2-cb9c-460f-8efc-b41bbe424a7d"
/>
expected
2024-12-13 16:35:06 -08:00
Botao Chen
c294a01c4b
[2/n][torchtune integration] implement job management and return training artifacts (#593)
### Context 
In this PR, we 
- Implement the post training job management and get training artifacts
apis
  - get_training_jobs
  - get_training_job_status
  - get_training_job_artifacts
- get_training_job_logstream is deleted since the trace can be directly
accessed by UI with Jaeger
https://llama-stack.readthedocs.io/en/latest/building_applications/telemetry.html#jaeger-to-visualize-traces
- Refactor the post training and training types definition to make them
more intuitive.
- Rewrite the checkpointer to make it compatible with llama-stack file
system and can be recognized during inference


### Test
Unit test
`pytest llama_stack/providers/tests/post_training/test_post_training.py
-m "torchtune_post_training_huggingface_datasetio" -v -s --tb=short
--disable-warnings`

<img width="1506" alt="Screenshot 2024-12-10 at 4 06 17 PM"
src="https://github.com/user-attachments/assets/16225029-bdb7-48c4-9d13-e580cc769c0a">


e2e test with client side call

<img width="888" alt="Screenshot 2024-12-10 at 4 09 44 PM"
src="https://github.com/user-attachments/assets/de375e4c-ef67-4dcc-a045-4037d9489191">
2024-12-13 15:00:04 -08:00
Botao Chen
aeb76390fc
[1/n] torchtune <> llama-stack integration skeleton (#540)
### Context 
This is the 1st of series PRs that integrate torchtune with llama-stack
as meta reference post-training implementation. For MVP, we will focus
on single device LoRA SFT.

Though this PR is still WIP, we want to get early feedback on the high
level design of this skeleton while still working on several details

### Scope
To limit the scope of this PR, we focus on the skeleton of the
implementation.

**What are included?**
- refine the post-training SFT apis
- skeleton of supervised_fine_tune implementation. We verified that we
can call the supervised_fine_tune API successfully from llama stack
client SDK (client side PR:
https://github.com/meta-llama/llama-stack-client-python/pull/51)
- a very basic single device LoRA training recipe based on torchtune
core components
- parity check with torchtune library and post training api unit test

**What are not includes?**
- implementation of other job management, get training artifacts apis
(separate PR)
- refactor the meta reference inference logic to support eval on
finetuned model (separate PR)
- several necessary functionality in the training recipe such as
logging, validation etc (separate PR)
- interop with telemetry for tracing and metrics logging, currently
temporarily log to local disk (separate PR)

### Testing
**e2e test**
Although we haven't added detailed testing and numerical parity check
with torchtune yet, we did a simple E2E test from client to server
1. setup server with` llama stack build --template
experimental-post-training --image-type conda` and `llama stack run
experimental-post-training `
2. On client, run `llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 post_training
supervised_fine_tune`
3. Training finishes successfully. On server side, get the finetune
checkpoints under output dir. On client side, get the job uuid

server 
<img width="1110" alt="Screenshot 2024-12-02 at 5 52 32 PM"
src="https://github.com/user-attachments/assets/b548eb90-7a9b-4edc-a858-ee237cc4361d">

client 
<img width="807" alt="Screenshot 2024-12-02 at 5 52 37 PM"
src="https://github.com/user-attachments/assets/1138ffa8-4698-40fa-b190-3d7b99646838">

**parity check**
torchtune dataloader output and llama-stack post training dataloader
output are same
<img width="1116" alt="Screenshot 2024-12-04 at 8 18 46 PM"
src="https://github.com/user-attachments/assets/5e295cdc-4c24-4ea6-82c0-ca96ef1bd6ee">

torchtune LoRA SFT and llama-stack post training LoRA SFT on alpaca
dataset with llama3.2 3B instruct model are numerical match

<img width="860" alt="Screenshot 2024-12-04 at 8 17 01 PM"
src="https://github.com/user-attachments/assets/c05cf0a8-c674-4d2e-9f0a-c5d01b2dca99">

<img width="1049" alt="Screenshot 2024-12-04 at 8 17 06 PM"
src="https://github.com/user-attachments/assets/b911d4e2-e7b1-41a9-b62c-d75529b6d443">

**unit test ** 
![Uploading Screenshot 2024-12-09 at 1.35.10 PM.png…]()
2024-12-13 11:05:35 -08:00