Commit graph

16 commits

Author SHA1 Message Date
Xi Yan
3a269c4635
[rag evals] refactor & add ability to eval retrieval + generation in agentic eval pipeline (#664)
# What does this PR do?

- See https://github.com/meta-llama/llama-stack/pull/666 &
https://github.com/meta-llama/llama-stack/pull/668

- Refactor BaseScoringFn to be just a minimal interface, add new
RegistrableBaseScoring
- Refactor data schema check
- To separately evaluate retrieval component in RAG, we will have
scoring functions needing "context" column additionally.
- Refactor braintrust eval (more scoring fn added & tested in following
PR)

## Test Plan

```
pytest -v -s -m llm_as_judge_scoring_together_inference scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference scoring/test_scoring.py
```

<img width="847" alt="image"
src="https://github.com/user-attachments/assets/d099cb2d-6f9c-4bdf-9d0d-f388cf758c0f"
/>

```
pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```
<img width="850" alt="image"
src="https://github.com/user-attachments/assets/dce28fc3-0493-4d34-820a-567260873cc8"
/>



## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-02 11:21:33 -08:00
Xi Yan
3c72c034e6
[remove import *] clean up import *'s (#689)
# What does this PR do?

- as title, cleaning up `import *`'s
- upgrade tests to make them more robust to bad model outputs
- remove import *'s in llama_stack/apis/* (skip __init__ modules)
<img width="465" alt="image"
src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2"
/>

- run `sh run_openapi_generator.sh`, no types gets affected

## Test Plan

### Providers Tests

**agents**
```
pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8
```

**inference**
```bash
# meta-reference
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

# together
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py 
```

**safety**
```
pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B
```

**memory**
```
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
```

**scoring**
```
pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
```


**datasetio**
```
pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py
pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py
```


**eval**
```
pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py
```

### Client-SDK Tests
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk
```

### llama-stack-apps
```
PORT=5000
LOCALHOST=localhost

python -m examples.agents.hello $LOCALHOST $PORT
python -m examples.agents.inflation $LOCALHOST $PORT
python -m examples.agents.podcast_transcript $LOCALHOST $PORT
python -m examples.agents.rag_as_attachments $LOCALHOST $PORT
python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT
python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT
python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT

# Vision model
python -m examples.interior_design_assistant.app
python -m examples.agent_store.app $LOCALHOST $PORT
```

### CLI
```
which llama
llama model prompt-format -m Llama3.2-11B-Vision-Instruct
llama model list
llama stack list-apis
llama stack list-providers inference

llama stack build --template ollama --image-type conda
```

### Distributions Tests
**ollama**
```
llama stack build --template ollama --image-type conda
ollama run llama3.2:1b-instruct-fp16
llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
```

**fireworks**
```
llama stack build --template fireworks --image-type conda
llama stack run ./llama_stack/templates/fireworks/run.yaml
```

**together**
```
llama stack build --template together --image-type conda
llama stack run ./llama_stack/templates/together/run.yaml
```

**tgi**
```
llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-27 15:45:44 -08:00
Botao Chen
aeb76390fc
[1/n] torchtune <> llama-stack integration skeleton (#540)
### Context 
This is the 1st of series PRs that integrate torchtune with llama-stack
as meta reference post-training implementation. For MVP, we will focus
on single device LoRA SFT.

Though this PR is still WIP, we want to get early feedback on the high
level design of this skeleton while still working on several details

### Scope
To limit the scope of this PR, we focus on the skeleton of the
implementation.

**What are included?**
- refine the post-training SFT apis
- skeleton of supervised_fine_tune implementation. We verified that we
can call the supervised_fine_tune API successfully from llama stack
client SDK (client side PR:
https://github.com/meta-llama/llama-stack-client-python/pull/51)
- a very basic single device LoRA training recipe based on torchtune
core components
- parity check with torchtune library and post training api unit test

**What are not includes?**
- implementation of other job management, get training artifacts apis
(separate PR)
- refactor the meta reference inference logic to support eval on
finetuned model (separate PR)
- several necessary functionality in the training recipe such as
logging, validation etc (separate PR)
- interop with telemetry for tracing and metrics logging, currently
temporarily log to local disk (separate PR)

### Testing
**e2e test**
Although we haven't added detailed testing and numerical parity check
with torchtune yet, we did a simple E2E test from client to server
1. setup server with` llama stack build --template
experimental-post-training --image-type conda` and `llama stack run
experimental-post-training `
2. On client, run `llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 post_training
supervised_fine_tune`
3. Training finishes successfully. On server side, get the finetune
checkpoints under output dir. On client side, get the job uuid

server 
<img width="1110" alt="Screenshot 2024-12-02 at 5 52 32 PM"
src="https://github.com/user-attachments/assets/b548eb90-7a9b-4edc-a858-ee237cc4361d">

client 
<img width="807" alt="Screenshot 2024-12-02 at 5 52 37 PM"
src="https://github.com/user-attachments/assets/1138ffa8-4698-40fa-b190-3d7b99646838">

**parity check**
torchtune dataloader output and llama-stack post training dataloader
output are same
<img width="1116" alt="Screenshot 2024-12-04 at 8 18 46 PM"
src="https://github.com/user-attachments/assets/5e295cdc-4c24-4ea6-82c0-ca96ef1bd6ee">

torchtune LoRA SFT and llama-stack post training LoRA SFT on alpaca
dataset with llama3.2 3B instruct model are numerical match

<img width="860" alt="Screenshot 2024-12-04 at 8 17 01 PM"
src="https://github.com/user-attachments/assets/c05cf0a8-c674-4d2e-9f0a-c5d01b2dca99">

<img width="1049" alt="Screenshot 2024-12-04 at 8 17 06 PM"
src="https://github.com/user-attachments/assets/b911d4e2-e7b1-41a9-b62c-d75529b6d443">

**unit test ** 
![Uploading Screenshot 2024-12-09 at 1.35.10 PM.png…]()
2024-12-13 11:05:35 -08:00
Sixian Yi
caf1dac114
unregister API for dataset (#507)
# What does this PR do?

1) Implement `unregister_dataset(dataset_id)` API in both llama stack
routing table and providers: It removes {dataset_id -> Dataset} mapping
from routing table and removes the dataset_id references in provider as
well (ex. for huggingface, we use a KV store to store the dataset id =>
dataset. we delete it during unregistering as well)

2) expose the datasets/unregister_dataset api endpoint 

## Test Plan

**Unit test:** 

`
pytest llama_stack/providers/tests/datasetio/test_datasetio.py -m
"huggingface" -v -s --tb=short --disable-warnings
`

**Test on endpoint:**
tested llama stack using an ollama distribution template:
1) start an ollama server 
2) Start a llama stack server with the default ollama distribution
config + dataset/datasetsio APIs + datasetio provider
```
---- .../ollama-run.yaml
...
apis:
- agents
- inference
- memory
- safety
- telemetry
- datasetio
- datasets
providers:
  datasetio:
  - provider_id: localfs
    provider_type: inline::localfs
    config: {}
...
```
   saw that the new API showed up in startup script
   
  ```
Serving API datasets
 GET /alpha/datasets/get
 GET /alpha/datasets/list
 POST /alpha/datasets/register
 POST /alpha/datasets/unregister
```

3) query `/alpha/datasets/unregister` through curl (since we have not implemented unregister api in llama stack client)

```
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets register
--dataset-id sixian --url
https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst
--schema {}
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩
│ sixian     │ localfs     │ {}       │ dataset │
└────────────┴─────────────┴──────────┴─────────┘
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets register
--dataset-id sixian2 --url
https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst
--schema {}
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩
│ sixian     │ localfs     │ {}       │ dataset │
│ sixian2    │ localfs     │ {}       │ dataset │
└────────────┴─────────────┴──────────┴─────────┘
(base) sxyi@sxyi-mbp llama-stack % curl
http://localhost:5001/alpha/datasets/unregister \
-H "Content-Type: application/json" \
-d '{"dataset_id": "sixian"}'
null%

(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩
│ sixian2    │ localfs     │ {}       │ dataset │
└────────────┴─────────────┴──────────┴─────────┘
(base) sxyi@sxyi-mbp llama-stack % curl
http://localhost:5001/alpha/datasets/unregister \
-H "Content-Type: application/json" \
-d '{"dataset_id": "sixian2"}'
null%

(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
```

## Sources


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-03 21:18:30 -08:00
Xi Yan
94a6f57812
change schema -> dataset_schema for register_dataset api (#443)
# What does this PR do?

- API updates: change schema to dataset_schema for register_dataset for
resolving pydantic naming conflict
- Note: this OpenAPI update will be synced with
llama-stack-client-python SDK.

cc @dineshyv 

## Test Plan

```
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-13 11:17:46 -05:00
Xi Yan
c29fa56dde
add inline:: prefix for localfs provider (#441)
# What does this PR do?

- add inline:: prefix for localfs provider

## Test Plan

```
llama stack run

datasetio:
  - provider_id: localfs-0
    provider_type: inline::localfs
    config: {}
```

```
pytest -v -s -m meta_reference_eval_fireworks_inference eval/test_eval.py
pytest -v -s -m localfs datasetio/test_datasetio.py
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-13 10:44:39 -05:00
Ashwin Bharambe
12947ac19e
Kill "remote" providers and fix testing with a remote stack properly (#435)
# What does this PR do?

This PR kills the notion of "pure passthrough" remote providers. You
cannot specify a single provider you must specify a whole distribution
(stack) as remote.

This PR also significantly fixes / upgrades testing infrastructure so
you can now test against a remotely hosted stack server by just doing

```bash
pytest -s -v -m remote  test_agents.py \
  --inference-model=Llama3.1-8B-Instruct --safety-shield=Llama-Guard-3-1B \
  --env REMOTE_STACK_URL=http://localhost:5001
```

Also fixed `test_agents_persistence.py` (which was broken) and killed
some deprecated testing functions.

## Test Plan

All the tests.
2024-11-12 21:51:29 -08:00
Dinesh Yeduguru
b95cb5308f
migrate dataset to resource (#420)
* migrate dataset to resource

* remove auto discovery

* remove listing of providers's datasets

* fix after rebase

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-11 17:14:41 -08:00
Xi Yan
b4416b72fd
Folder restructure for evals/datasets/scoring (#419)
* rename evals related stuff

* fix datasetio

* fix scoring test

* localfs -> LocalFS

* refactor scoring

* refactor scoring

* remove 8b_correctness scoring_fn from tests

* tests w/ eval params

* scoring fn braintrust fixture

* import
2024-11-11 17:35:40 -05:00
Xi Yan
2b7d70ba86
[Evals API][11/n] huggingface dataset provider + mmlu scoring fn (#392)
* wip

* scoring fn api

* eval api

* eval task

* evaluate api update

* pre commit

* unwrap context -> config

* config field doc

* typo

* naming fix

* separate benchmark / app eval

* api name

* rename

* wip tests

* wip

* datasetio test

* delete unused

* fixture

* scoring resolve

* fix scoring register

* scoring test pass

* score batch

* scoring fix

* fix eval

* test eval works

* huggingface provider

* datasetdef files

* mmlu scoring fn

* test wip

* remove type ignore

* api refactor

* add default task_eval_id for routing

* add eval_id for jobs

* remove type ignore

* huggingface provider

* wip huggingface register

* only keep 1 run_eval

* fix optional

* register task required

* register task required

* delete old tests

* fix

* mmlu loose

* refactor

* msg

* fix tests

* move benchmark task def to file

* msg

* gen openapi

* openapi gen

* move dataset to hf llamastack repo

* remove todo

* refactor

* add register model to unit test

* rename

* register to client

* delete preregistered dataset/eval task

* comments

* huggingface -> remote adapter

* openapi gen
2024-11-11 14:49:50 -05:00
Xi Yan
6192bf43a4
[Evals API][10/n] API updates for EvalTaskDef + new test migration (#379)
* wip

* scoring fn api

* eval api

* eval task

* evaluate api update

* pre commit

* unwrap context -> config

* config field doc

* typo

* naming fix

* separate benchmark / app eval

* api name

* rename

* wip tests

* wip

* datasetio test

* delete unused

* fixture

* scoring resolve

* fix scoring register

* scoring test pass

* score batch

* scoring fix

* fix eval

* test eval works

* remove type ignore

* api refactor

* add default task_eval_id for routing

* add eval_id for jobs

* remove type ignore

* only keep 1 run_eval

* fix optional

* register task required

* register task required

* delete old tests

* delete old tests

* fixture return impl
2024-11-07 21:24:12 -08:00
Xi Yan
ed833bb758
[Evals API][7/n] braintrust scoring provider (#333)
* wip scoring refactor

* llm as judge, move folders

* test full generation + eval

* extract score regex to llm context

* remove prints, cleanup braintrust in this branch

* braintrust skeleton

* datasetio test fix

* braintrust provider

* remove prints

* dependencies

* change json -> class

* json -> class

* remove initialize

* address nits

* check identifier prefix

* braintrust scoring identifier check, rebase

* udpate MANIFEST

* manifest

* remove braintrust scoring_fn

* remove comments

* tests

* imports fix
2024-10-28 18:59:35 -07:00
Xi Yan
7b8748c53e
[Evals API][6/n] meta-reference llm as judge, registration for ScoringFnDefs (#330)
* wip scoring refactor

* llm as judge, move folders

* test full generation + eval

* extract score regex to llm context

* remove prints, cleanup braintrust in this branch

* change json -> class

* remove initialize

* address nits

* check identifier prefix

* udpate MANIFEST
2024-10-28 14:08:42 -07:00
Xi Yan
abdf7cddf3
[Evals API][4/n] evals with generation meta-reference impl (#303)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* evals with generation

* add all rows scores to ScoringResult

* minor typing

* bugfix

* scoring function def rename

* rebase name

* refactor

* address comments

* Update iOS inference instructions for new quantization

* Small updates to quantization config

* Fix score threshold in faiss

* Bump version to 0.0.45

* Handle both ipv6 and ipv4 interfaces together

* update manifest for build templates

* Update getting_started.md

* chatcompletion & completion input type validation

* inclusion->subsetof

* error checking

* scoring_function -> scoring_fn rename, scorer -> scoring_fn rename

* address comments

* [Evals API][5/n] fixes to generate openapi spec (#323)

* generate openapi

* typing comment, dataset -> dataset_id

* remove custom type

* sample eval run.yaml

---------

Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2024-10-25 13:12:39 -07:00
Xi Yan
cb84034567
[Evals API][3/n] scoring_functions / scoring meta-reference implementations (#296)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* add all rows scores to ScoringResult

* bugfix

* scoring function def rename
2024-10-24 14:52:30 -07:00
Xi Yan
821810657f
[Evals API][2/n] datasets / datasetio meta-reference implementation (#288)
* skeleton dataset / datasetio

* dataset datasetio

* config

* address comments

* delete dataset_utils

* address comments

* naming fix
2024-10-22 16:12:16 -07:00