mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-18 10:52:28 +00:00
3 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
|
4ae5656c2f
|
feat: Implement keyword search in milvus (#2231)
Some checks failed
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 7s
Integration Tests / discover-tests (push) Successful in 8s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 10s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 6s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 9s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 10s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 8s
Test Llama Stack Build / generate-matrix (push) Successful in 8s
Python Package Build Test / build (3.13) (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
Unit Tests / unit-tests (3.13) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 15s
Test External Providers / test-external-providers (venv) (push) Failing after 9s
Test Llama Stack Build / build-single-provider (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 14s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 19s
Integration Tests / test-matrix (push) Failing after 8s
Test Llama Stack Build / build (push) Failing after 5s
Python Package Build Test / build (3.12) (push) Failing after 51s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 55s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 57s
Update ReadTheDocs / update-readthedocs (push) Failing after 50s
Pre-commit / pre-commit (push) Successful in 2m9s
# What does this PR do? This PR adds the keyword search implementation for Milvus. Along with the implementation for remote Milvus, the tests require us to start a Milvus containers locally. In order to verify the implementation, run: ``` pytest tests/unit/providers/vector_io/remote/test_milvus.py -v -s --tb=short --disable-warnings --asyncio-mode=auto ``` You can also test the changes using the below script: ``` #!/usr/bin/env python3 import asyncio import os import uuid from typing import List from llama_stack_client import ( Agent, AgentEventLogger, LlamaStackClient, RAGDocument ) class MilvusRAGDemo: def __init__(self, base_url: str = "http://localhost:8321/"): self.client = LlamaStackClient(base_url=base_url) self.vector_db_id = f"milvus_rag_demo_{uuid.uuid4().hex[:8]}" self.model_id = None self.embedding_model_id = None self.embedding_dimension = None def setup_models(self): """Get available models and select appropriate ones for LLM and embeddings.""" models = self.client.models.list() # Select embedding model embedding_models = [m for m in models if m.model_type == "embedding"] if not embedding_models: raise ValueError("No embedding models found") self.embedding_model_id = embedding_models[0].identifier self.embedding_dimension = embedding_models[0].metadata["embedding_dimension"] def register_vector_db(self): print(f"Registering Milvus vector database: {self.vector_db_id}") response = self.client.vector_dbs.register( vector_db_id=self.vector_db_id, embedding_model=self.embedding_model_id, embedding_dimension=self.embedding_dimension, provider_id="milvus-remote", # Use remote Milvus ) print(f"Vector database registered successfully") return response def insert_documents(self): """Insert sample documents into the vector database.""" print("\nInserting sample documents...") # Sample documents about different topics documents = [ RAGDocument( document_id="ai_ml_basics", content=""" Artificial Intelligence (AI) and Machine Learning (ML) are transforming the world. AI refers to the simulation of human intelligence in machines, while ML is a subset of AI that enables computers to learn and improve from experience without being explicitly programmed. Deep learning, a subset of ML, uses neural networks with multiple layers to process complex patterns in data. Key concepts in AI/ML include: - Supervised Learning: Training with labeled data - Unsupervised Learning: Finding patterns in unlabeled data - Reinforcement Learning: Learning through trial and error - Neural Networks: Computing systems inspired by biological brains """, mime_type="text/plain", metadata={"topic": "technology", "category": "ai_ml"}, ), ] # Insert documents with chunking self.client.tool_runtime.rag_tool.insert( documents=documents, vector_db_id=self.vector_db_id, chunk_size_in_tokens=200, # Smaller chunks for better granularity ) print(f"Inserted {len(documents)} documents with chunking") def test_keyword_search(self): """Test keyword-based search using BM25.""" queries = [ "neural networks", "Python frameworks", "data cleaning", ] for query in queries: response = self.client.vector_io.query( vector_db_id=self.vector_db_id, query=query, params={ "mode": "keyword", # Keyword search "max_chunks": 3, "score_threshold": 0.0, } ) for i, (chunk, score) in enumerate(zip(response.chunks, response.scores)): print(f" {i+1}. Score: {score:.4f}") print(f" Content: {chunk.content[:100]}...") print(f" Metadata: {chunk.metadata}") def run_demo(self): try: self.setup_models() self.register_vector_db() self.insert_documents() self.test_keyword_search() except Exception as e: print(f"Error during demo: {e}") raise def main(): """Main function to run the demo.""" # Check if Llama Stack server is running demo = MilvusRAGDemo() try: demo.run_demo() except Exception as e: print(f"Demo failed: {e}") if __name__ == "__main__": main() ``` [//]: # (## Documentation) --------- Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com> |
||
|
d39660afed
|
fix(remote:milvus): add missing files_api parameter and kvstore configuration (#2630)
- Fix constructor call missing files_api parameter - Add kvstore field to MilvusVectorIOConfig - Resolves #2626 # What does this PR do? [https://github.com/meta-llama/llama-stack/issues/2626] ## Problem The `MilvusVectorIOAdapter` fails to initialize due to two missing configuration issues: 1. Missing `files_api` parameter in the constructor call 2. Missing `kvstore` field in the `MilvusVectorIOConfig` class ## Root Cause 1. The adapter constructor expects 3 parameters `(config, inference_api, files_api)` but the `get_adapter_impl` function only passes 2 parameters 2. The `MilvusVectorIOConfig` class lacks the `kvstore` field that the adapter's `initialize()` method expects for metadata persistence ## Solution - Added `files_api = deps.get(Api.files, None)` to safely retrieve files API from dependencies - Pass the files_api parameter to MilvusVectorIOAdapter constructor - Added `kvstore: KVStoreConfig | None = None` field to MilvusVectorIOConfig - Maintains backward compatibility since both files_api and kvstore can be None Closes #2626 ## Test Plan - [x] Tested with Milvus configuration - server starts successfully ```yaml vector_io: - provider_id: milvus provider_type: remote::milvus config: uri: http://localhost:19530 token: root:Milvus kvstore: type: sqlite namespace: null db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/remote-vllm}/milvus_store.db ``` - [x] Vector operations work as expected ```python from llama_stack_client import LlamaStackClient from llama_stack_client.types.shared_params.document import Document as RAGDocument from llama_stack_client.lib.agents.agent import Agent from llama_stack_client.lib.agents.event_logger import EventLogger as AgentEventLogger import os endpoint = os.getenv("LLAMA_STACK_ENDPOINT") model = os.getenv("INFERENCE_MODEL") # Initialize the client client = LlamaStackClient(base_url=endpoint) vector_db_id = "my_documents" response = client.vector_dbs.register( vector_db_id=vector_db_id, embedding_model="all-MiniLM-L6-v2", embedding_dimension=384, provider_id="milvus", ) urls = ["getting_started/Red_Hat_AI_Inference_Server-3.0-Getting_started-en-US.pdf", "vllm_server_arguments/Red_Hat_AI_Inference_Server-3.0-vLLM_server_arguments-en-US.pdf"] documents = [ RAGDocument( document_id=f"num-{i}", content=f"https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/3.0/pdf/{url}", mime_type="application/pdf", metadata={}, ) for i, url in enumerate(urls) ] client.tool_runtime.rag_tool.insert( documents=documents, vector_db_id=vector_db_id, chunk_size_in_tokens=512, ) rag_agent = Agent( client, model=model, # Define instructions for the agent (system prompt) instructions="You are a helpful assistant", enable_session_persistence=False, # Define tools available to the agent tools=[ { "name": "builtin::rag/knowledge_search", "args": { "vector_db_ids": [vector_db_id], }, } ], ) session_id = rag_agent.create_session("test-session") user_prompts = [ "How to start the AI Inference Server container image? use the knowledge_search tool to get information.", ] for prompt in user_prompts: print(f"User> {prompt}") response = rag_agent.create_turn( messages=[{"role": "user", "content": prompt}], session_id=session_id, ) for log in AgentEventLogger().log(response): log.print() ``` server logs: ``` INFO 2025-07-04 22:18:30,385 __main__:577 server: Listening on ['::', '0.0.0.0']:5000 INFO: Started server process [769725] INFO: Waiting for application startup. INFO 2025-07-04 22:18:30,390 __main__:158 server: Starting up INFO: Application startup complete. INFO: Uvicorn running on http://['::', '0.0.0.0']:5000 (Press CTRL+C to quit) INFO 2025-07-04 22:18:52,193 llama_stack.distribution.routing_tables.common:200 core: Setting owner for vector_db 'my_documents' to 20:18:52.194 [START] /v1/vector-dbs INFO: 192.168.1.249:64170 - "POST /v1/vector-dbs HTTP/1.1" 200 OK 20:18:52.216 [END] /v1/vector-dbs [StatusCode.OK] (21.89ms) 20:18:52.222 [START] /v1/tool-runtime/rag-tool/insert INFO 2025-07-04 22:18:56,265 llama_stack.providers.utils.inference.embedding_mixin:102 uncategorized: Loading sentence transformer for all-MiniLM-L6-v2... WARNING 2025-07-04 22:18:59,214 opentelemetry.trace:537 uncategorized: Overriding of current TracerProvider is not allowed INFO 2025-07-04 22:18:59,339 sentence_transformers.SentenceTransformer:219 uncategorized: Use pytorch device_name: cuda:0 INFO 2025-07-04 22:18:59,340 sentence_transformers.SentenceTransformer:227 uncategorized: Load pretrained SentenceTransformer: all-MiniLM-L6-v2 INFO: 192.168.1.249:64170 - "POST /v1/tool-runtime/rag-tool/insert HTTP/1.1" 200 OK INFO: 192.168.1.249:64170 - "POST /v1/agents HTTP/1.1" 200 OK INFO: 192.168.1.249:64170 - "GET /v1/tools?toolgroup_id=builtin%3A%3Arag%2Fknowledge_search HTTP/1.1" 200 OK INFO: 192.168.1.249:64170 - "POST /v1/agents/b1f6f063-1691-4780-8d9e-facd81708b91/session HTTP/1.1" 200 OK 20:19:01.834 [END] /v1/tool-runtime/rag-tool/insert [StatusCode.OK] (9612.06ms) 20:19:01.839 [START] /v1/agents INFO: 192.168.1.249:64170 - "POST /v1/agents/b1f6f063-1691-4780-8d9e-facd81708b91/session/d2706302-bb54-421d-a890-5e25df9cb47f/turn HTTP/1.1" 200 OK 20:19:01.839 [END] /v1/agents [StatusCode.OK] (0.18ms) 20:19:01.844 [START] /v1/tools INFO 2025-07-04 22:19:01,853 llama_stack.providers.remote.inference.vllm.vllm:330 uncategorized: Initializing vLLM client with base_url=http://192.168.1.183:8080/v1 20:19:01.858 [END] /v1/tools [StatusCode.OK] (14.92ms) 20:19:01.868 [START] /v1/agents/{agent_id}/session 20:19:01.868 [END] /v1/agents/{agent_id}/session [StatusCode.OK] (0.37ms) 20:19:01.873 [START] /v1/agents/{agent_id}/session/{session_id}/turn 20:19:01.885 [START] inference 20:19:05.506 [END] inference [StatusCode.OK] (3621.19ms) INFO 2025-07-04 22:19:05,537 llama_stack.providers.inline.agents.meta_reference.agent_instance:890 agents: executing tool call: knowledge_search with args: {'query': 'How to start the AI Inference Server container image'} 20:19:05.538 [START] tool_execution 20:19:05.928 [END] tool_execution [StatusCode.OK] (390.08ms) 20:19:05.538 [INFO] executing tool call: knowledge_search with args: {'query': 'How to start the AI Inference Server container image'} 20:19:05.935 [START] inference 20:19:17.539 [END] inference [StatusCode.OK] (11603.76ms) 20:19:17.560 [END] /v1/agents/{agent_id}/session/{session_id}/turn [StatusCode.OK] (15686.62ms) ``` - [x] No regressions in functionality - [x] Configuration properly accepts kvstore settings --------- Co-authored-by: Peter Gustafsson <peter.gustafsson6@gmail.com> Co-authored-by: raghotham <rsm@meta.com> Co-authored-by: Francisco Arceo <farceo@redhat.com> |
||
|
c9a49a80e8
|
docs: auto generated documentation for providers (#2543)
# What does this PR do? Simple approach to get some provider pages in the docs. Add or update description fields in the provider configuration class using Pydantic’s Field, ensuring these descriptions are clear and complete, as they will be used to auto-generate provider documentation via ./scripts/distro_codegen.py instead of editing the docs manually. Signed-off-by: Sébastien Han <seb@redhat.com> |
Renamed from docs/source/providers/vector_io/milvus.md (Browse further)