llama-stack-mirror/docs/source/providers/vector_io/remote_milvus.md
pgustafs d39660afed
fix(remote:milvus): add missing files_api parameter and kvstore configuration (#2630)
- Fix constructor call missing files_api parameter
- Add kvstore field to MilvusVectorIOConfig
- Resolves #2626

# What does this PR do?
[https://github.com/meta-llama/llama-stack/issues/2626]
## Problem
The `MilvusVectorIOAdapter` fails to initialize due to two missing
configuration issues:
1. Missing `files_api` parameter in the constructor call
2. Missing `kvstore` field in the `MilvusVectorIOConfig` class

## Root Cause  
1. The adapter constructor expects 3 parameters `(config, inference_api,
files_api)` but the `get_adapter_impl` function only passes 2 parameters
2. The `MilvusVectorIOConfig` class lacks the `kvstore` field that the
adapter's `initialize()` method expects for metadata persistence

## Solution
- Added `files_api = deps.get(Api.files, None)` to safely retrieve files
API from dependencies
- Pass the files_api parameter to MilvusVectorIOAdapter constructor
- Added `kvstore: KVStoreConfig | None = None` field to
MilvusVectorIOConfig
- Maintains backward compatibility since both files_api and kvstore can
be None

Closes #2626

## Test Plan
- [x] Tested with Milvus configuration - server starts successfully 
```yaml
vector_io:
  - provider_id: milvus
    provider_type: remote::milvus
    config:
      uri: http://localhost:19530
      token: root:Milvus
      kvstore:
        type: sqlite
        namespace: null
        db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/remote-vllm}/milvus_store.db
```
- [x] Vector operations work as expected
```python
from llama_stack_client import LlamaStackClient
from llama_stack_client.types.shared_params.document import Document as RAGDocument
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger as AgentEventLogger
import os


endpoint =  os.getenv("LLAMA_STACK_ENDPOINT")
model =  os.getenv("INFERENCE_MODEL")

# Initialize the client
client = LlamaStackClient(base_url=endpoint)

vector_db_id = "my_documents"

response = client.vector_dbs.register(
    vector_db_id=vector_db_id,
    embedding_model="all-MiniLM-L6-v2",
    embedding_dimension=384,
    provider_id="milvus",
)

urls = ["getting_started/Red_Hat_AI_Inference_Server-3.0-Getting_started-en-US.pdf", "vllm_server_arguments/Red_Hat_AI_Inference_Server-3.0-vLLM_server_arguments-en-US.pdf"]
documents = [
    RAGDocument(
        document_id=f"num-{i}",
        content=f"https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/3.0/pdf/{url}",
        mime_type="application/pdf",
        metadata={},
    )
    for i, url in enumerate(urls)
]

client.tool_runtime.rag_tool.insert(
    documents=documents,
    vector_db_id=vector_db_id,
    chunk_size_in_tokens=512,
)

rag_agent = Agent(
    client,
    model=model,
    # Define instructions for the agent (system prompt)
    instructions="You are a helpful assistant",
    enable_session_persistence=False,
    # Define tools available to the agent
    tools=[
        {
            "name": "builtin::rag/knowledge_search",
            "args": {
                "vector_db_ids": [vector_db_id],
            },
        }
    ],
)

session_id = rag_agent.create_session("test-session")

user_prompts = [
    "How to start the AI Inference Server container image? use the knowledge_search tool to get information.",
]

for prompt in user_prompts:
    print(f"User> {prompt}")
    response = rag_agent.create_turn(
        messages=[{"role": "user", "content": prompt}],
        session_id=session_id,
    )
    for log in AgentEventLogger().log(response):
        log.print()
```    

server logs:
```
INFO     2025-07-04 22:18:30,385 __main__:577 server: Listening on ['::', '0.0.0.0']:5000                                                             
INFO:     Started server process [769725]
INFO:     Waiting for application startup.
INFO     2025-07-04 22:18:30,390 __main__:158 server: Starting up                                                                                     
INFO:     Application startup complete.
INFO:     Uvicorn running on http://['::', '0.0.0.0']:5000 (Press CTRL+C to quit)
INFO     2025-07-04 22:18:52,193 llama_stack.distribution.routing_tables.common:200 core: Setting owner for vector_db 'my_documents' to               
20:18:52.194 [START] /v1/vector-dbs
INFO:     192.168.1.249:64170 - "POST /v1/vector-dbs HTTP/1.1" 200 OK
20:18:52.216 [END] /v1/vector-dbs [StatusCode.OK] (21.89ms)
20:18:52.222 [START] /v1/tool-runtime/rag-tool/insert
INFO     2025-07-04 22:18:56,265 llama_stack.providers.utils.inference.embedding_mixin:102 uncategorized: Loading sentence transformer for            
         all-MiniLM-L6-v2...                                                                                                                          
WARNING  2025-07-04 22:18:59,214 opentelemetry.trace:537 uncategorized: Overriding of current TracerProvider is not allowed                           
INFO     2025-07-04 22:18:59,339 sentence_transformers.SentenceTransformer:219 uncategorized: Use pytorch device_name: cuda:0                         
INFO     2025-07-04 22:18:59,340 sentence_transformers.SentenceTransformer:227 uncategorized: Load pretrained SentenceTransformer: all-MiniLM-L6-v2   
INFO:     192.168.1.249:64170 - "POST /v1/tool-runtime/rag-tool/insert HTTP/1.1" 200 OK
INFO:     192.168.1.249:64170 - "POST /v1/agents HTTP/1.1" 200 OK
INFO:     192.168.1.249:64170 - "GET /v1/tools?toolgroup_id=builtin%3A%3Arag%2Fknowledge_search HTTP/1.1" 200 OK
INFO:     192.168.1.249:64170 - "POST /v1/agents/b1f6f063-1691-4780-8d9e-facd81708b91/session HTTP/1.1" 200 OK
20:19:01.834 [END] /v1/tool-runtime/rag-tool/insert [StatusCode.OK] (9612.06ms)
20:19:01.839 [START] /v1/agents
INFO:     192.168.1.249:64170 - "POST /v1/agents/b1f6f063-1691-4780-8d9e-facd81708b91/session/d2706302-bb54-421d-a890-5e25df9cb47f/turn HTTP/1.1" 200 OK
20:19:01.839 [END] /v1/agents [StatusCode.OK] (0.18ms)
20:19:01.844 [START] /v1/tools
INFO     2025-07-04 22:19:01,853 llama_stack.providers.remote.inference.vllm.vllm:330 uncategorized: Initializing vLLM client with                    
         base_url=http://192.168.1.183:8080/v1                                                                                                        
20:19:01.858 [END] /v1/tools [StatusCode.OK] (14.92ms)
20:19:01.868 [START] /v1/agents/{agent_id}/session
20:19:01.868 [END] /v1/agents/{agent_id}/session [StatusCode.OK] (0.37ms)
20:19:01.873 [START] /v1/agents/{agent_id}/session/{session_id}/turn
20:19:01.885 [START] inference
20:19:05.506 [END] inference [StatusCode.OK] (3621.19ms)
INFO     2025-07-04 22:19:05,537 llama_stack.providers.inline.agents.meta_reference.agent_instance:890 agents: executing tool call: knowledge_search  
         with args: {'query': 'How to start the AI Inference Server container image'}                                                                 
20:19:05.538 [START] tool_execution
20:19:05.928 [END] tool_execution [StatusCode.OK] (390.08ms)
 20:19:05.538 [INFO] executing tool call: knowledge_search with args: {'query': 'How to start the AI Inference Server container image'}
20:19:05.935 [START] inference
20:19:17.539 [END] inference [StatusCode.OK] (11603.76ms)
20:19:17.560 [END] /v1/agents/{agent_id}/session/{session_id}/turn [StatusCode.OK] (15686.62ms)
```
- [x] No regressions in functionality
- [x] Configuration properly accepts kvstore settings

---------

Co-authored-by: Peter Gustafsson <peter.gustafsson6@gmail.com>
Co-authored-by: raghotham <rsm@meta.com>
Co-authored-by: Francisco Arceo <farceo@redhat.com>
2025-07-09 10:08:14 +02:00

4.2 KiB

remote::milvus

Description

Milvus is an inline and remote vector database provider for Llama Stack. It allows you to store and query vectors directly within a Milvus database. That means you're not limited to storing vectors in memory or in a separate service.

Features

  • Easy to use
  • Fully integrated with Llama Stack

Usage

To use Milvus in your Llama Stack project, follow these steps:

  1. Install the necessary dependencies.
  2. Configure your Llama Stack project to use Milvus.
  3. Start storing and querying vectors.

Installation

You can install Milvus using pymilvus:

pip install pymilvus

Configuration

In Llama Stack, Milvus can be configured in two ways:

  • Inline (Local) Configuration - Uses Milvus-Lite for local storage
  • Remote Configuration - Connects to a remote Milvus server

Inline (Local) Configuration

The simplest method is local configuration, which requires setting db_path, a path for locally storing Milvus-Lite files:

vector_io:
  - provider_id: milvus
    provider_type: inline::milvus
    config:
      db_path: ~/.llama/distributions/together/milvus_store.db

Remote Configuration

Remote configuration is suitable for larger data storage requirements:

Standard Remote Connection

vector_io:
  - provider_id: milvus
    provider_type: remote::milvus
    config:
      uri: "http://<host>:<port>"
      token: "<user>:<password>"

TLS-Enabled Remote Connection (One-way TLS)

For connections to Milvus instances with one-way TLS enabled:

vector_io:
  - provider_id: milvus
    provider_type: remote::milvus
    config:
      uri: "https://<host>:<port>"
      token: "<user>:<password>"
      secure: True
      server_pem_path: "/path/to/server.pem"

Mutual TLS (mTLS) Remote Connection

For connections to Milvus instances with mutual TLS (mTLS) enabled:

vector_io:
  - provider_id: milvus
    provider_type: remote::milvus
    config:
      uri: "https://<host>:<port>"
      token: "<user>:<password>"
      secure: True
      ca_pem_path: "/path/to/ca.pem"
      client_pem_path: "/path/to/client.pem"
      client_key_path: "/path/to/client.key"

Key Parameters for TLS Configuration

  • secure: Enables TLS encryption when set to true. Defaults to false.
  • server_pem_path: Path to the server certificate for verifying the server's identity (used in one-way TLS).
  • ca_pem_path: Path to the Certificate Authority (CA) certificate for validating the server certificate (required in mTLS).
  • client_pem_path: Path to the client certificate file (required for mTLS).
  • client_key_path: Path to the client private key file (required for mTLS).

Documentation

See the Milvus documentation for more details about Milvus in general.

For more details on TLS configuration, refer to the TLS setup guide.

Configuration

Field Type Required Default Description
uri <class 'str'> No PydanticUndefined The URI of the Milvus server
token str | None No PydanticUndefined The token of the Milvus server
consistency_level <class 'str'> No Strong The consistency level of the Milvus server
kvstore utils.kvstore.config.RedisKVStoreConfig | utils.kvstore.config.SqliteKVStoreConfig | utils.kvstore.config.PostgresKVStoreConfig | utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type' No Config for KV store backend (SQLite only for now)
config dict No {} This configuration allows additional fields to be passed through to the underlying Milvus client. See the Milvus documentation for more details about Milvus in general.

Note

: This configuration class accepts additional fields beyond those listed above. You can pass any additional configuration options that will be forwarded to the underlying provider.

Sample Configuration

uri: ${env.MILVUS_ENDPOINT}
token: ${env.MILVUS_TOKEN}