This changes adds Optional metadata field to OpenAI compatible request and
response object.
fixes: #3564
Signed-off-by: Abhishek Bongale <abhishekbongale@outlook.com>
# Fix for Issue #3797
## Problem
Vector store search failed with Pydantic ValidationError when chunk
metadata contained list-type values.
**Error:**
```
ValidationError: 3 validation errors for VectorStoreSearchResponse
attributes.tags.str: Input should be a valid string
attributes.tags.float: Input should be a valid number
attributes.tags.bool: Input should be a valid boolean
```
**Root Cause:**
- `Chunk.metadata` accepts `dict[str, Any]` (any type allowed)
- `VectorStoreSearchResponse.attributes` requires `dict[str, str | float
| bool]` (primitives only)
- Direct assignment at line 641 caused validation failure for
non-primitive types
## Solution
Added utility function to filter metadata to primitive types before
creating search response.
## Impact
**Fixed:**
- Vector search works with list metadata (e.g., `tags: ["transformers",
"gpu"]`)
- Lists become searchable as comma-separated strings
- No ValidationError on search responses
**Preserved:**
- Full metadata still available in `VectorStoreContent.metadata`
- No API schema changes
- Backward compatible with existing primitive metadata
**Affected:**
All vector store providers using `OpenAIVectorStoreMixin`: FAISS,
Chroma, Qdrant, Milvus, Weaviate, PGVector, SQLite-vec
## Testing
tests/unit/providers/vector_io/test_vector_utils.py::test_sanitize_metadata_for_attributes
---------
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
# What does this PR do?
Initial PR against #4123
Adds `parallel_tool_calls` spec to Responses API and basic initial
implementation where no more than one function call is generated when
set to `False`.
## Test Plan
* Unit tests have been added to verify no more than one function call is
generated.
* A followup PR will verify passing through `parallel_tool_calls` to
providers.
* A followup PR will address verification and/or implementation of
incremental function calling across multiple conversational turns.
---------
Signed-off-by: Anastas Stoyanovsky <astoyano@redhat.com>
FastAPI generator now only unwraps body params explicitly marked with
Body(embed=False) so the /eval run_eval schema once again exposes
RunEvalRequest, matching our integration tests and the server's request
parsing.
Regenerated the OpenAPI specs to capture the restored wrapper.
CI on the Stainless preview builds should be green.
# What does this PR do?
This replaces the legacy "pyopenapi + strong_typing" pipeline with a
FastAPI-backed generator that has an explicit schema registry inside
`llama_stack_api`. The key changes:
1. **New generator architecture.** FastAPI now builds the OpenAPI schema
directly from the real routes, while helper modules
(`schema_collection`, `endpoints`, `schema_transforms`, etc.)
post-process the result. The old pyopenapi stack and its strong_typing
helpers are removed entirely, so we no longer rely on fragile AST
analysis or top-level import side effects.
2. **Schema registry in `llama_stack_api`.** `schema_utils.py` keeps a
`SchemaInfo` record for every `@json_schema_type`, `register_schema`,
and dynamically created request model. The OpenAPI generator and other
tooling query this registry instead of scanning the package tree,
producing deterministic names (e.g., `{MethodName}Request`), capturing
all optional/nullable fields, and making schema discovery testable. A
new unit test covers the registry behavior.
3. **Regenerated specs + CI alignment.** All docs/Stainless specs are
regenerated from the new pipeline, so optional/nullable fields now match
reality (expect the API Conformance workflow to report breaking
changes—this PR establishes the new baseline). The workflow itself is
back to the stock oasdiff invocation so future regressions surface
normally.
*Conformance will be RED on this PR; we choose to accept the
deviations.*
## Test Plan
- `uv run pytest tests/unit/server/test_schema_registry.py`
- `uv run python -m scripts.openapi_generator.main docs/static`
---------
Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
Mark all register_* / unregister_* APIs as deprecated across models,
shields, tool groups, datasets, benchmarks, and scoring functions. This
is the first step toward moving resource mutations to an `/admin`
namespace as outlined in
https://github.com/llamastack/llama-stack/issues/3809#issuecomment-3492931585.
The deprecation flag will be reflected in the OpenAPI schema to warn API
users that these endpoints are being phased out. Next step will be
implementing the `/admin` route namespace for these resource management
operations.
- `register_model` / `unregister_model`
- `register_shield` / `unregister_shield`
- `register_tool_group` / `unregister_toolgroup`
- `register_dataset` / `unregister_dataset`
- `register_benchmark` / `unregister_benchmark`
- `register_scoring_function` / `unregister_scoring_function`
This PR removes all routes which we had marked deprecated for the 0.3.0
release.
This includes:
- all the `/v1/openai/v1/` routes (the corresponding /v1 routes still
exist of course)
- the /agents API (which is superseded completely by Responses +
Conversations)
- several alpha routes which had a "v1" route to aide transitioning to
"v1alpha"
This is the corresponding client-python change:
https://github.com/llamastack/llama-stack-client-python/pull/294
We need to remove `/v1/openai/v1` paths shortly. There is one trouble --
our current `/v1/openai/v1/models` endpoint provides different data than
`/v1/models`. Unfortunately our tests target the latter (llama-stack
customized) behavior. We need to get to true OpenAI compatibility.
This is step 1: adding `custom_metadata` field to `OpenAIModel` that
includes all the extra stuff we add in the native `/v1/models` response.
This can be extracted on the consumer end by look at
`__pydantic_extra__` or other similar fields.
This PR:
- Adds `custom_metadata` field to `OpenAIModel` class in
`src/llama_stack/apis/models/models.py`
- Modified `openai_list_models()` in
`src/llama_stack/core/routing_tables/models.py` to populate
custom_metadata
Next Steps
1. Update stainless client to use `/v1/openai/v1/models` instead of
`/v1/models`
2. Migrate tests to read from `custom_metadata`
3. Remove `/v1/openai/v1/` prefix entirely and consolidate to single
`/v1/models` endpoint
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR is responsible for making changes to Responses API scheme to
introduce OpenAI compatible prompts there. Change to the API only,
therefore currently no implementation at all. However, the follow up PR
with actual implementation will be submitted after current PR lands.
The need of this functionality was initiated in #3514.
> Note, #3514 is divided on three separate PRs. Current PR is the second
of three.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
CI
# What does this PR do?
Introduces two main fixes to enhance the stability of Responses API when
dealing with tool calling responses and structured outputs.
### Changes Made
1. It added OpenAIResponseOutputMessageMCPCall and ListTools to
OpenAIResponseInput but
https://github.com/llamastack/llama-stack/pull/3810 got merge that did
the same in a different way. Still this PR does it in a way that keep
the sync between OpenAIResponsesOutput and the allowed objects in
OpenAIResponseInput.
2. Add protection in case self.ctx.response_format does not have type
attribute
BREAKING CHANGE: OpenAIResponseInput now uses OpenAIResponseOutput union
type.
This is semantically equivalent - all previously accepted types are
still supported
via the OpenAIResponseOutput union. This improves type consistency and
maintainability.
This patch ensures if max tokens is not defined, then is set to None
instead of 0 when calling openai_chat_completion. This way some
providers (like gemini) that cannot handle the `max_tokens = 0` will not
fail
Issue: #3666
# What does this PR do?
https://platform.openai.com/docs/api-reference/moderations supports
optional model parameter.
This PR adds support for using moderations API with model=None if a
default shield id is provided via safety config.
## Test Plan
added tests
manual test:
```
> SAFETY_MODEL='together/meta-llama/Llama-Guard-4-12B' uv run llama stack run starter
> curl http://localhost:8321/v1/moderations \
-H "Content-Type: application/json" \
-d '{
"input": [
"hello"
]
}'
```
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
- Extend the model type to include rerank models.
- Implement `rerank()` method in inference router.
- Add `rerank_model_list` to `OpenAIMixin` to enable providers to
register and identify rerank models
- Update documentation.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
```
pytest tests/unit/providers/utils/inference/test_openai_mixin.py
```
# Problem
The current inline provider appends the user provided instructions to
messages as a system prompt, but the returned response object does not
contain the instructions field (as specified in the OpenAI responses
spec).
# What does this PR do?
This pull request adds the instruction field to the response object
definition and updates the inline provider. It also ensures that
instructions from previous response is not carried over to the next
response (as specified in the openAI spec).
Closes #[3566](https://github.com/llamastack/llama-stack/issues/3566)
## Test Plan
- Tested manually for change in model response w.r.t supplied
instructions field.
- Added unit test to check that the instructions from previous response
is not carried over to the next response.
- Added integration tests to check instructions parameter in the
returned response object.
- Added new recordings for the integration tests.
---------
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
# What does this PR do?
Have closed the previous PR due to merge conflicts with multiple PRs
Addressed all comments from
https://github.com/llamastack/llama-stack/pull/3768 (sorry for carrying
over to this one)
## Test Plan
Added UTs and integration tests
This PR updates the Conversation item related types and improves a
couple critical parts of the implemenation:
- it creates a streaming output item for the final assistant message
output by
the model. until now we only added content parts and included that
message in the final response.
- rewrites the conversation update code completely to account for items
other than messages (tool calls, outputs, etc.)
## Test Plan
Used the test script from
https://github.com/llamastack/llama-stack-client-python/pull/281 for
this
```
TEST_API_BASE_URL=http://localhost:8321/v1 \
pytest tests/integration/test_agent_turn_step_events.py::test_client_side_function_tool -xvs
```
# What does this PR do?
As discussed on discord, we do not need to reinvent the wheel for
telemetry. Instead we'll lean into the canonical OTEL stack.
Logs/traces/metrics will still be sent via OTEL - they just won't be
stored on, queried through Stack.
This is the first of many PRs to remove telemetry API from Stack.
1) removed webmethod decorators to remove from API spec
2) removed tests as @iamemilio is adding them on otel directly.
## Test Plan
Applies the same pattern from
https://github.com/llamastack/llama-stack/pull/3777 to embeddings and
vector_stores.create() endpoints.
This should _not_ be a breaking change since (a) our tests were already
using the `extra_body` parameter when passing in to the backend (b) but
the backend probably wasn't extracting the parameters correctly. This PR
will fix that.
Updated APIs: `openai_embeddings(), openai_create_vector_store(),
openai_create_vector_store_file_batch()`
Implements missing streaming events from OpenAI Responses API spec:
- reasoning text/summary events for o1/o3 models,
- refusal events for safety moderation
- annotation events for citations,
- and file search streaming events.
Added optional reasoning_content field to chat completion chunks to
support non-standard provider extensions.
**NOTE:** OpenAI does _not_ fill reasoning_content when users use the
chat_completion APIs. This means there is no way for us to implement
Responses (with reasoning) by using OpenAI chat completions! We'd need
to transparently punt to OpenAI's responses endpoints if we wish to do
that. For others though (vLLM, etc.) we can use it.
## Test Plan
File search streaming test passes:
```
./scripts/integration-tests.sh --stack-config server:ci-tests \
--suite responses --setup gpt --inference-mode replay --pattern test_response_file_search_streaming_events
```
Need more complex setup and validation for reasoning tests (need a vLLM
powered OSS model maybe gpt-oss which can return reasoning_content). I
will do that in a followup PR.
# What does this PR do?
Allows passing through extra_body parameters to inference providers.
With this, we removed the 2 vllm-specific parameters from completions
API into `extra_body`.
Before/After
<img width="1883" height="324" alt="image"
src="https://github.com/user-attachments/assets/acb27c08-c748-46c9-b1da-0de64e9908a1"
/>
closes#2720
## Test Plan
CI and added new test
```
❯ uv run pytest -s -v tests/integration/ --stack-config=server:starter --inference-mode=record -k 'not( builtin_tool or safety_with_image or code_interpreter or test_rag ) and test_openai_completion_guided_choice' --setup=vllm --suite=base --color=yes
Uninstalled 3 packages in 125ms
Installed 3 packages in 19ms
INFO 2025-10-10 14:29:54,317 tests.integration.conftest:118 tests: Applying setup 'vllm' for suite base
INFO 2025-10-10 14:29:54,331 tests.integration.conftest:47 tests: Test stack config type: server
(stack_config=server:starter)
============================================================================================================== test session starts ==============================================================================================================
platform darwin -- Python 3.12.11, pytest-8.4.2, pluggy-1.6.0 -- /Users/erichuang/projects/llama-stack-1/.venv/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.12.11', 'Platform': 'macOS-15.6.1-arm64-arm-64bit', 'Packages': {'pytest': '8.4.2', 'pluggy': '1.6.0'}, 'Plugins': {'anyio': '4.9.0', 'html': '4.1.1', 'socket': '0.7.0', 'asyncio': '1.1.0', 'json-report': '1.5.0', 'timeout': '2.4.0', 'metadata': '3.1.1', 'cov': '6.2.1', 'nbval': '0.11.0'}}
rootdir: /Users/erichuang/projects/llama-stack-1
configfile: pyproject.toml
plugins: anyio-4.9.0, html-4.1.1, socket-0.7.0, asyncio-1.1.0, json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, cov-6.2.1, nbval-0.11.0
asyncio: mode=Mode.AUTO, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function
collected 285 items / 284 deselected / 1 selected
tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B]
instantiating llama_stack_client
Starting llama stack server with config 'starter' on port 8321...
Waiting for server at http://localhost:8321... (0.0s elapsed)
Waiting for server at http://localhost:8321... (0.5s elapsed)
Waiting for server at http://localhost:8321... (5.1s elapsed)
Waiting for server at http://localhost:8321... (5.6s elapsed)
Waiting for server at http://localhost:8321... (10.1s elapsed)
Waiting for server at http://localhost:8321... (10.6s elapsed)
Server is ready at http://localhost:8321
llama_stack_client instantiated in 11.773s
PASSEDTerminating llama stack server process...
Terminating process 98444 and its group...
Server process and children terminated gracefully
============================================================================================================= slowest 10 durations ==============================================================================================================
11.88s setup tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B]
3.02s call tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B]
0.01s teardown tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B]
================================================================================================ 1 passed, 284 deselected, 3 warnings in 16.21s =================================================================================================
```
# What does this PR do?
Converts openai(_chat)_completions params to pydantic BaseModel to
reduce code duplication across all providers.
## Test Plan
CI
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with
[ReviewStack](https://reviewstack.dev/llamastack/llama-stack/pull/3761).
* #3777
* __->__ #3761
# What does this PR do?
This PR checks whether, if a previous response is linked, there are
mcp_list_tools objects that can be reused instead of listing the tools
explicitly every time.
Closes#3106
## Test Plan
Tested manually.
Added unit tests to cover new behaviour.
---------
Signed-off-by: Gordon Sim <gsim@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
## Summary
Adds OpenAI-compatible usage tracking types to enable reporting token
consumption for both streaming and non-streaming responses.
## Type Definitions
**Chat Completion Usage** (inference API):
```python
class OpenAIChatCompletionUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
prompt_tokens_details: OpenAIChatCompletionUsagePromptTokensDetails | None
completion_tokens_details: OpenAIChatCompletionUsageCompletionTokensDetails | None
```
**Response Usage** (responses API):
```python
class OpenAIResponseUsage(BaseModel):
input_tokens: int
output_tokens: int
total_tokens: int
input_tokens_details: OpenAIResponseUsageInputTokensDetails | None
output_tokens_details: OpenAIResponseUsageOutputTokensDetails | None
```
This matches OpenAI's usage reporting format and enables PR #3766 to
implement usage tracking in streaming responses.
Co-authored-by: Claude <noreply@anthropic.com>
# What does this PR do?
* Cleans up API docstrings for better documentation rendering
<img width="2346" height="1126" alt="image"
src="https://github.com/user-attachments/assets/516b09a1-2d5b-4614-a3a9-13431fc21fc1"
/>
## Test Plan
* Manual testing
---------
Signed-off-by: Doug Edgar <dedgar@redhat.com>
Signed-off-by: Charlie Doern <cdoern@redhat.com>
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: ehhuang <ehhuang@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
Co-authored-by: Matthew Farrellee <matt@cs.wisc.edu>
Co-authored-by: Doug Edgar <dedgar@redhat.com>
Co-authored-by: Christian Zaccaria <73656840+ChristianZaccaria@users.noreply.github.com>
Co-authored-by: Anastas Stoyanovsky <contact@anastas.eu>
Co-authored-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Young Han <110819238+seyeong-han@users.noreply.github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
## Summary
Introduce `ExtraBodyField` annotation to enable parameters that arrive
via extra_body in client SDKs but are accessible server-side with full
typing.
These parameters are documented in OpenAPI specs under
**`x-llama-stack-extra-body-params`** but excluded from generated SDK
signatures.
Add `shields` parameter to `create_openai_response` as the first
implementation using this pattern.
## Test Plan
- added an integration test which checks that shields parameter passed
via extra_body reaches server implementation
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
---------
Co-authored-by: Claude <noreply@anthropic.com>
This is a sweeping change to clean up some gunk around our "Tool"
definitions.
First, we had two types `Tool` and `ToolDef`. The first of these was a
"Resource" type for the registry but we had stopped registering tools
inside the Registry long back (and only registered ToolGroups.) The
latter was for specifying tools for the Agents API. This PR removes the
former and adds an optional `toolgroup_id` field to the latter.
Secondly, as pointed out by @bbrowning in
https://github.com/llamastack/llama-stack/pull/3003#issuecomment-3245270132,
we were doing a lossy conversion from a full JSON schema from the MCP
tool specification into our ToolDefinition to send it to the model.
There is no necessity to do this -- we ourselves aren't doing any
execution at all but merely passing it to the chat completions API which
supports this. By doing this (and by doing it poorly), we encountered
limitations like not supporting array items, or not resolving $refs,
etc.
To fix this, we replaced the `parameters` field by `{ input_schema,
output_schema }` which can be full blown JSON schemas.
Finally, there were some types in our llama-related chat format
conversion which needed some cleanup. We are taking this opportunity to
clean those up.
This PR is a substantial breaking change to the API. However, given our
window for introducing breaking changes, this suits us just fine. I will
be landing a concurrent `llama-stack-client` change as well since API
shapes are changing.
# What does this PR do?
Adds supplementary static content to root API spec pages. This is useful for giving context behind a specific API group, adding information on supported features or work in progress, etc.
This PR introduces supplementary information for Agents (experimental, deprecated) and Responses (stable) APIs.
<!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. -->
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
Documentation server renders rich static content for the Agents API group:

<!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* -->
# What does this PR do?
First step towards cleaning up the API reference section of the docs.
- Separates API reference into 3 sections: stable (`v1`), experimental (`v1alpha` and `v1beta`), and deprecated (`deprecated=True`)
- Each section is accessible via the dropdown menu and `docs/api-overview`
<img width="1237" height="321" alt="Screenshot 2025-09-30 at 5 47 30 PM" src="https://github.com/user-attachments/assets/fe0e498c-b066-46ed-a48e-4739d3b6724c" />
<img width="860" height="510" alt="Screenshot 2025-09-30 at 5 47 49 PM" src="https://github.com/user-attachments/assets/a92a8d8c-94bf-42d5-9f5b-b47bb2b14f9c" />
- Deprecated APIs: Added styling to the sidebar, and a notice on the endpoint pages
<img width="867" height="428" alt="Screenshot 2025-09-30 at 5 47 43 PM" src="https://github.com/user-attachments/assets/9e6e050d-c782-461b-8084-5ff6496d7bd9" />
Closes#3628
TODO in follow-up PRs:
- Add the ability to annotate API groups with supplementary content (so we can have longer descriptions of complex APIs like Responses)
- Clean up docstrings to show API endpoints (or short semantic titles) in the sidebar
## Test Plan
- Local testing
- Made sure API conformance test still passes