Extracts common OpenAI vector-store code into its own mixin so that all
providers can share the same core logic.
This also makes it easy for Llama Stack to support both vector-stores
and Llama Stack APIs in the interim so that both share the same
underlying vector-dbs.
Each provider contains storage specific logic to `create / edit / delete
/ list` vector dbs while the plumbing logic is standardized in the
common code.
Ensured that this works well with both faiss and sqllite-vec.
### Test Plan
```
llama stack run starter
pytest -sv --stack-config http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2
```
Adding OpenAI compat `/v1/vector-store` apis.
This PR implements the `faiss` provider with followup PRs coming up for
other providers.
Added routes to create, update, delete, list vector stores.
Also added route to search a vector store
Inserting into vector stores is missing and will be a follow up diff.
### Test Plan
- Added new integration test for testing the faiss provider
```
pytest -sv --stack-config http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2
```
# What does this PR do?
Fixes provider pgvector `query_vector` function for when the distance
between the query embedding and an embedding within the vector db is 0
(identical vectors). Catches `ZeroDivisionError` and then sets `score`
to infinity, which represent maximum similarity.
<!-- If resolving an issue, uncomment and update the line below -->
Closes [#2381]
## Test Plan
Checkout this PR
Execute this code and there will no longer be a `ZeroDivisionError`
exception
```
from llama_stack_client import LlamaStackClient
base_url = "http://localhost:8321"
client = LlamaStackClient(base_url=base_url)
models = client.models.list()
embedding_model = (
em := next(m for m in models if m.model_type == "embedding")
).identifier
embedding_dimension = 384
_ = client.vector_dbs.register(
vector_db_id="foo_db",
embedding_model=embedding_model,
embedding_dimension=embedding_dimension,
provider_id="pgvector",
)
chunk = {
"content": "foo",
"mime_type": "text/plain",
"metadata": {
"document_id": "foo-id"
}
}
client.vector_io.insert(vector_db_id="foo_db", chunks=[chunk])
client.vector_io.query(vector_db_id="foo_db", query="foo")
```
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
To add health status check for remote VLLM
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
PR includes the unit test to test the added health check implementation
feature.
The non-streaming version is just a small layer on top of the streaming
version - just pluck off the final `response.completed` event and return
that as the response!
This PR also includes a couple other changes which I ended up making
while working on it on a flight:
- changes to `ollama` so it does not pull embedding models
unconditionally
- a small fix to library client to make the stream and non-stream cases
a bit more symmetric
# What does this PR do?
The chat completion ids generated by Ollama are not unique enough to use
with stored chat completions as they rely on only 3 numbers of
randomness to give unique values - ie `chatcmpl-373`. This causes
frequent collisions in id values of chat completions in Ollama, which
creates issues in our SQL storage of chat completions by id where it
expects ids to actually be unique.
So, this adjusts Ollama responses to use uuids as unique ids. This does
mean we're replacing the ids generated natively by Ollama. If we don't
wish to do this, we'll either need to relax the unique constraint on our
chat completions id field in the inference storage or convince Ollama
upstream to use something closer to uuid values here.
Closes#2315
## Test Plan
I tested by running the openai completion / chat completion integration
tests in a loop. Without this change, I regularly get unique id
collisions. With this change, I do not. We sometimes see flakes from
these unique id collisions in our CI tests, and this will resolve those.
```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack run llama_stack/templates/ollama/run.yaml
while true; do; \
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
pytest -s -v \
tests/integration/inference/test_openai_completion.py \
--stack-config=http://localhost:8321 \
--text-model="meta-llama/Llama-3.2-3B-Instruct"; \
done
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>
fixes provider to use stream var correctly
Before
```
curl --request POST \
--url http://localhost:8321/v1/openai/v1/chat/completions \
--header 'content-type: application/json' \
--data '{
"model": "meta-llama/Llama-4-Scout-17B-16E-Instruct",
"messages": [
{
"role": "user",
"content": "Who are you?"
}
]
}'
{"detail":"Internal server error: An unexpected error occurred."}
```
After
```
llama-stack % curl --request POST \
--url http://localhost:8321/v1/openai/v1/chat/completions \
--header 'content-type: application/json' \
--data '{
"model": "accounts/fireworks/models/llama4-scout-instruct-basic",
"messages": [
{
"role": "user",
"content": "Who are you?"
}
]
}'
{"id":"chatcmpl-97978538-271d-4c73-8d4d-c509bfb6c87e","choices":[{"message":{"role":"assistant","content":"I'm an AI assistant designed by Meta. I'm here to answer your questions, share interesting ideas and maybe even surprise you with a fresh perspective. What's on your mind?","name":null,"tool_calls":null},"finish_reason":"stop","index":0,"logprobs":null}],"object":"chat.completion","created":1748896403,"model":"accounts/fireworks/models/llama4-scout-instruct-basic"}%
```
# What does this PR do?
Adds a new endpoint that is compatible with OpenAI for embeddings api.
`/openai/v1/embeddings`
Added providers for OpenAI, LiteLLM and SentenceTransformer.
## Test Plan
```
LLAMA_STACK_CONFIG=http://localhost:8321 pytest -sv tests/integration/inference/test_openai_embeddings.py --embedding-model all-MiniLM-L6-v2,text-embedding-3-small,gemini/text-embedding-004
```
# What does this PR do?
Updates sambanova inference to use strict as false in json_schema
structured output
## Test Plan
pytest -s -v tests/integration/inference/test_text_inference.py
--stack-config=sambanova
--text-model=sambanova/Meta-Llama-3.3-70B-Instruct
# What does this PR do?
Handles the case where the vllm config `tls_verify` is set to `false` or
`true`.
Closes: https://github.com/meta-llama/llama-stack/issues/2283
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
The `tls_verify` can now receive a path to a certificate file if the
endpoint requires it.
Signed-off-by: Sébastien Han <seb@redhat.com>
When registering a MCP endpoint, we cannot list tools (like we used to)
since the MCP endpoint may be behind an auth wall. Registration can
happen much sooner (via run.yaml).
Instead, we do listing only when the _user_ actually calls listing.
Furthermore, we cache the list in-memory in the server. Currently, the
cache is not invalidated -- we may want to periodically re-list for MCP
servers. Note that they must call `list_tools` before calling
`invoke_tool` -- we use this critically.
This will enable us to list MCP servers in run.yaml
## Test Plan
Existing tests, updated tests accordingly.
The most interesting MCP servers are those with an authorization wall in
front of them. This PR uses the existing `provider_data` mechanism of
passing provider API keys for passing MCP access tokens (in fact,
arbitrary headers in the style of the OpenAI Responses API) from the
client through to the MCP server.
```
class MCPProviderDataValidator(BaseModel):
# mcp_endpoint => list of headers to send
mcp_headers: dict[str, list[str]] | None = None
```
Note how we must stuff the headers for all MCP endpoints into a single
"MCPProviderDataValidator". Unlike existing providers (e.g., Together
and Fireworks for inference) where we could name the provider api keys
clearly (`together_api_key`, `fireworks_api_key`), we cannot name these
keys for MCP. We have a single generic MCP provider which can serve
multiple "toolgroups". So we use a dict to combine all the headers for
all MCP endpoints you may want to use in an agentic call.
## Test Plan
See the added integration test for usage.
# What does this PR do?
Since https://github.com/meta-llama/llama-stack/pull/2193 switched to
openai sdk, we need to strip 'openai/' from the model_id
## Test Plan
start server with openai provider and send a chat completion call
# What does this PR do?
Includes SambaNova safety adaptor to use the sambanova cloud served
Meta-Llama-Guard-3-8B
minor updates in sambanova docs
## Test Plan
pytest -s -v tests/integration/safety/test_safety.py
--stack-config=sambanova --safety-shield=sambanova/Meta-Llama-Guard-3-8B
# What does this PR do?
This PR introduces support for keyword based FTS5 search with BM25
relevance scoring. It makes changes to the existing EmbeddingIndex base
class in order to support a search_mode and query_str parameter, that
can be used for keyword based search implementations.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
run
```
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
```
Output:
```
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
/Users/vnarsing/miniconda3/envs/stack-client/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"
warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
====================================================== test session starts =======================================================
platform darwin -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-14.7.4-arm64-arm-64bit', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0'}}
rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack
configfile: pyproject.toml
plugins: html-4.1.1, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0
asyncio: mode=auto, asyncio_default_fixture_loop_scope=None
collected 7 items
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_add_chunks PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_vector PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_fts PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_chunk_id_conflict PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_register_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_unregister_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_generate_chunk_id PASSED
```
For reference, with the implementation, the fts table looks like below:
```
Chunk ID: 9fbc39ce-c729-64a2-260f-c5ec9bb2a33e, Content: Sentence 0 from document 0
Chunk ID: 94062914-3e23-44cf-1e50-9e25821ba882, Content: Sentence 1 from document 0
Chunk ID: e6cfd559-4641-33ba-6ce1-7038226495eb, Content: Sentence 2 from document 0
Chunk ID: 1383af9b-f1f0-f417-4de5-65fe9456cc20, Content: Sentence 3 from document 0
Chunk ID: 2db19b1a-de14-353b-f4e1-085e8463361c, Content: Sentence 4 from document 0
Chunk ID: 9faf986a-f028-7714-068a-1c795e8f2598, Content: Sentence 5 from document 0
Chunk ID: ef593ead-5a4a-392f-7ad8-471a50f033e8, Content: Sentence 6 from document 0
Chunk ID: e161950f-021f-7300-4d05-3166738b94cf, Content: Sentence 7 from document 0
Chunk ID: 90610fc4-67c1-e740-f043-709c5978867a, Content: Sentence 8 from document 0
Chunk ID: 97712879-6fff-98ad-0558-e9f42e6b81d3, Content: Sentence 9 from document 0
Chunk ID: aea70411-51df-61ba-d2f0-cb2b5972c210, Content: Sentence 0 from document 1
Chunk ID: b678a463-7b84-92b8-abb2-27e9a1977e3c, Content: Sentence 1 from document 1
Chunk ID: 27bd63da-909c-1606-a109-75bdb9479882, Content: Sentence 2 from document 1
Chunk ID: a2ad49ad-f9be-5372-e0c7-7b0221d0b53e, Content: Sentence 3 from document 1
Chunk ID: cac53bcd-1965-082a-c0f4-ceee7323fc70, Content: Sentence 4 from document 1
```
Query results:
Result 1: Sentence 5 from document 0
Result 2: Sentence 5 from document 1
Result 3: Sentence 5 from document 2
[//]: # (## Documentation)
---------
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
# What does this PR do?
When launching a fine-tuning job, an upcoming version of NeMo Customizer
will expect the `config` name to be formatted as
`namespace/name@version`. Here, `config` is a reference to a model +
additional metadata. There could be multiple `config`s that reference
the same base model.
This PR updates NVIDIA's `supervised_fine_tune` to simply pass the
`model` param as-is to NeMo Customizer. Currently, it expects a
specific, allowlisted llama model (i.e. `meta/Llama3.1-8B-Instruct`) and
converts it to the provider format (`meta/llama-3.1-8b-instruct`).
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
From a notebook, I built an image with my changes:
```
!llama stack build --template nvidia --image-type venv
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient("nvidia")
client.initialize()
```
And could successfully launch a job:
```
response = client.post_training.supervised_fine_tune(
job_uuid="",
model="meta/llama-3.2-1b-instruct@v1.0.0+A100", # Model passed as-is to Customimzer
...
)
job_id = response.job_uuid
print(f"Created job with ID: {job_id}")
Output:
Created job with ID: cust-Jm4oGmbwcvoufaLU4XkrRU
```
[//]: # (## Documentation)
---------
Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
# What does this PR do?
This PR introduces APIs to retrieve past chat completion requests, which
will be used in the LS UI.
Our current `Telemetry` is ill-suited for this purpose as it's untyped
so we'd need to filter by obscure attribute names, making it brittle.
Since these APIs are 'provided by stack' and don't need to be
implemented by inference providers, we introduce a new InferenceProvider
class, containing the existing inference protocol, which is implemented
by inference providers.
The APIs are OpenAI-compliant, with an additional `input_messages`
field.
## Test Plan
This PR just adds the API and marks them provided_by_stack. S
tart stack server -> doesn't crash
# What does this PR do?
fixes#2121
this implementation splits reponsibility between litellm and openai
libraries -
| Inference Method | Implementation Source |
|----------------------------|--------------------------|
| completion | LiteLLMOpenAIMixin |
| chat_completion | LiteLLMOpenAIMixin |
| embedding | LiteLLMOpenAIMixin |
| batch_completion | LiteLLMOpenAIMixin |
| batch_chat_completion | LiteLLMOpenAIMixin |
| openai_completion | AsyncOpenAI |
| openai_chat_completion | AsyncOpenAI |
## Test Plan
smoke test with -
```
$ OPENAI_API_KEY=$LLAMA_API_KEY OPENAI_BASE_URL=https://api.llama.com/compat/v1 llama stack build --image-type conda --image-name openai --providers inference=remote::openai --run
$ llama-stack-client models register Llama-4-Scout-17B-16E-Instruct-FP8
$ curl "http://localhost:8321/v1/openai/v1/chat/completions" -H "Content-Type: application/json" \ -d '{
"model": "Llama-4-Scout-17B-16E-Instruct-FP8",
"messages": [
{"role": "user", "content": "Hello Llama! Can you give me a quick intro?"}
]
}'
{"id":"AmPwrrkc5JgVjejPdIPrpT2","choices":[{"finish_reason":"stop","index":0,"logprobs":{"content":null,"refusal":null},"message":{"content":"Hello! I'm Llama, a Meta-designed model that adapts to your conversational style. Whether you need quick answers, deep dives into ideas, or just want to vent, joke, or brainstorm—I'm here for it. What’s on your mind?","refusal":"","role":"assistant","annotations":null,"audio":null,"function_call":null,"tool_calls":null,"id":"AmPwrrkc5JgVjejPdIPrpT2"}}],"created":1747410061,"model":"Llama-4-Scout-17B-16E-Instruct-FP8","object":"chat.completions","service_tier":null,"system_fingerprint":null,"usage":{"completion_tokens":54,"prompt_tokens":22,"total_tokens":76,"completion_tokens_details":null,"prompt_tokens_details":null}}
```
and run full test suite.
# What does this PR do?
This fixes an issue in how we used the tool_call_buf from streaming tool
calls in the remote-vllm provider where it would end up concatenating
parameters from multiple different tool call results instead of
aggregating the results from each tool call separately.
It also fixes an issue found while digging into that where we were
accidentally mixing the json string form of tool call parameters with
the string representation of the python form, which mean we'd end up
with single quotes in what should be double-quoted json strings.
Closes#1120
## Test Plan
The following tests are now passing 100% for the remote-vllm provider,
where some of the test_text_inference were failing before this change:
```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/inference/test_text_inference.py --text-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/inference/test_vision_inference.py --vision-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"
```
All but one of the agent tests are passing (including the multi-tool
one). See the PR at https://github.com/vllm-project/vllm/pull/17917 and
a gist at
https://gist.github.com/bbrowning/4734240ce96b4264340caa9584e47c9e for
changes needed there, which will have to get made upstream in vLLM.
Agent tests:
```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/agents/test_agents.py --text-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"
````
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
note: the openai provider exposes the litellm specific model names to
the user. this change is compatible with that. the litellm names should
be deprecated.
# What does this PR do?
Closes#2113.
Closes#1783.
Fixes a bug in handling the end of tool execution request stream where
no `finish_reason` is provided by the model.
## Test Plan
1. Ran existing unit tests
2. Added a dedicated test verifying correct behavior in this edge case
3. Ran the code snapshot from #2113
[//]: # (## Documentation)
# What does this PR do?
Closes#2111.
Fixes an error causing Llama Stack to just return `<tool_call>` and
complete the turn without actually executing the tool. See the issue
description for more detail.
## Test Plan
1) Ran existing unit tests
2) Added a dedicated test verifying correct behavior in this edge case
3) Ran the code snapshot from #2111
# What does this PR do?
The ollama provider was using an older variant of the code to convert
incoming parameters from the OpenAI API completions and chat completion
endpoints into requests that get sent to the backend provider over its
own OpenAI client. This updates it to use the common
`prepare_openai_completion_params` method used elsewhere, which takes
care of removing stray `None` values even for nested structures.
Without this, some other parameters, even if they have values of `None`,
make their way to ollama and actually influence its inference output as
opposed to when those parameters are not sent at all.
## Test Plan
This passes tests/integration/inference/test_openai_completion.py and
fixes the issue found in #2098, which was tested via manual curl
requests crafted a particular way.
Closes#2098
Signed-off-by: Ben Browning <bbrownin@redhat.com>
```
$ INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
CHROMADB_URL=http://localhost:8000 \
llama stack build --image-type conda --image-name llama \
--providers vector_io=remote::chromadb,inference=remote::ollama \
--run
...
File ".../llama_stack/providers/remote/vector_io/chroma/chroma.py", line 31, in <module>
ChromaClientType = chromadb.AsyncHttpClient | chromadb.PersistentClient
TypeError: unsupported operand type(s) for |: 'function' and 'function'
```
issue: AsyncHttpClient and PersistentClient are functions that return
AsyncClientAPI and ClientAPI types, respectively. | cannot be used to
construct a type from functions.
previously the code was Union[AsyncHttpClient, PersistentClient], which
did not trigger an error
# What does this PR do?
Closes#2135
# What does this PR do?
In our OpenAI API verification tests, some providers were still calling
tools even when `tool_choice="none"` was passed in the chat completion
requests. Because they aren't all respecting `tool_choice` properly,
this adjusts our routing implementation to remove the `tools` and
`tool_choice` from the request if `tool_choice="none"` is passed in so
that it does not attempt to call any of those tools. Adjusting this in
the router fixes this across all providers.
This also cleans up the non-streaming together.ai responses for tools,
ensuring it returns `None` instead of an empty list when there are no
tool calls, to exactly match the OpenAI API responses in that case.
## Test Plan
I observed existing failures in our OpenAI API verification suite - see
https://github.com/bbrowning/llama-stack-tests/blob/main/openai-api-verification/2025-04-27.md#together-llama-stack
for the failing `test_chat_*_tool_choice_none` tests. All streaming and
non-streaming variants were failing across all 3 tested models.
After this change, all of those 6 failing tests are now passing with no
regression in the other tests.
I verified this via:
```
llama stack run --image-type venv \
tests/verifications/openai-api-verification-run.yaml
```
```
python -m pytest -s -v \
'tests/verifications/openai_api/test_chat_completion.py' \
--provider=together-llama-stack
```
The entire verification suite is not 100% on together.ai yet, but it's
getting closer.
This also increased the pass rate for fireworks.ai, and did not regress
the groq or openai tests at all.
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
switch sambanova inference adaptor to LiteLLM usage to simplify
integration and solve issues with current adaptor when streaming and
tool calling, models and templates updated
## Test Plan
pytest -s -v tests/integration/inference/test_text_inference.py
--stack-config=sambanova
--text-model=sambanova/Meta-Llama-3.3-70B-Instruct
pytest -s -v tests/integration/inference/test_vision_inference.py
--stack-config=sambanova
--vision-model=sambanova/Llama-3.2-11B-Vision-Instruct
# What does this PR do?
Mainly tried to cover the entire llama_stack/apis directory, we only
have one left. Some excludes were just noop.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
For the Issue :-
#[2010](https://github.com/meta-llama/llama-stack/issues/2010)
Currently, if we try to connect the Llama stack server to a remote
Milvus instance that has TLS enabled, the connection fails because TLS
support is not implemented in the Llama stack codebase. As a result,
users are unable to use secured Milvus deployments out of the box.
After adding this , the user will be able to connect to remote::Milvus
which is TLS enabled .
if TLS enabled :-
```
vector_io:
- provider_id: milvus
provider_type: remote::milvus
config:
uri: "http://<host>:<port>"
token: "<user>:<password>"
secure: True
server_pem_path: "path/to/server.pem"
```
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
I have already tested it by connecting to a Milvus instance which is TLS
enabled and i was able to start llama stack server .
# What does this PR do?
The goal of this PR is code base modernization.
Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)
Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Add several new pre-commit hooks to improve code quality and security:
- no-commit-to-branch: prevent direct commits to protected branches like
`main`
- check-yaml: validate YAML files
- detect-private-key: prevent accidental commit of private keys
- requirements-txt-fixer: maintain consistent requirements.txt format
and sorting
- mixed-line-ending: enforce LF line endings to avoid mixed line endings
- check-executables-have-shebangs: ensure executable scripts have
shebangs
- check-json: validate JSON files
- check-shebang-scripts-are-executable: verify shebang scripts are
executable
- check-symlinks: validate symlinks and report broken ones
- check-toml: validate TOML files mainly for pyproject.toml
The respective fixes have been included.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
When running a Llama Stack server and invoking the
`/v1/safety/run-shield` endpoint, the NVIDIA Guardrails endpoint in some
cases errors with a `422: Unprocessable Entity` due to malformed input.
For example, given an request body like:
```
{
"model": "test",
"messages": [
{ "role": "user", "content": "You are stupid." }
]
}
```
`convert_pydantic_to_json_value` converts the message to:
```
{ "role": "user", "content": "You are stupid.", "context": null }
```
Which causes NVIDIA Guardrails to return an error `HTTPError: 422 Client
Error: Unprocessable Entity for url:
http://nemo.test/v1/guardrail/checks`, because `context` shouldn't be
included in the body.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
I ran the Llama Stack server locally and manually verified that the
endpoint now succeeds.
```
message = {"role": "user", "content": "You are stupid."}
response = client.safety.run_shield(messages=[message], shield_id=shield_id, params={})
```
Server logs:
```
14:29:09.656 [START] /v1/safety/run-shield
INFO: 127.0.0.1:54616 - "POST /v1/safety/run-shield HTTP/1.1" 200 OK
14:29:09.918 [END] /v1/safety/run-shield [StatusCode.OK] (262.26ms
```
[//]: # (## Documentation)
Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
# What does this PR do?
In our OpenAI API verification tests, ollama was still calling tools
even when `tool_choice="none"` was passed in its chat completion
requests. Because ollama isn't respecting `tool_choice` properly, this
adjusts our provider implementation to remove the `tools` from the
request if `tool_choice="none"` is passed in so that it does not attempt
to call any of those tools.
## Test Plan
I tested this with a couple of Llama models, using both our OpenAI
completions integration tests and our verification test suites.
### OpenAI Completions / Chat Completions integration tests
These all passed before, and still do.
```
INFERENCE_MODEL="llama3.2:3b-instruct-fp16" \
llama stack build --template ollama --image-type venv --run
```
```
LLAMA_STACK_CONFIG=http://localhost:8321 \
python -m pytest -v \
tests/integration/inference/test_openai_completion.py \
--text-model "llama3.2:3b-instruct-fp16"
```
### OpenAI API Verification test suite
test_chat_*_tool_choice_none OpenAI API verification tests pass now,
when they failed before.
See
https://github.com/bbrowning/llama-stack-tests/blob/main/openai-api-verification/2025-04-27.md#ollama-llama-stack
for an example of these failures from a recent nightly CI run.
```
INFERENCE_MODEL="llama3.3:70b-instruct-q3_K_M" \
llama stack build --template ollama --image-type venv --run
```
```
cat <<-EOF > tests/verifications/conf/ollama-llama-stack.yaml
base_url: http://localhost:8321/v1/openai/v1
api_key_var: OPENAI_API_KEY
models:
- llama3.3:70b-instruct-q3_K_M
model_display_names:
llama3.3:70b-instruct-q3_K_M: Llama-3.3-70B-Instruct
test_exclusions:
llama3.3:70b-instruct-q3_K_M:
- test_chat_non_streaming_image
- test_chat_streaming_image
- test_chat_multi_turn_multiple_images
EOF
```
```
python -m pytest -s -v \
'tests/verifications/openai_api/test_chat_completion.py' \
--provider=ollama-llama-stack
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
Implemetation of NeMO Datastore register, unregister API.
Open Issues:
- provider_id gets set to `localfs` in client.datasets.register() as it
is specified in routing_tables.py: DatasetsRoutingTable
see: #1860
Currently I have passed `"provider_id":"nvidia"` in metadata and have
parsed that in `DatasetsRoutingTable`
(Not the best approach, but just a quick workaround to make it work for
now.)
## Test Plan
- Unit test cases: `pytest
tests/unit/providers/nvidia/test_datastore.py`
```bash
========================================================== test session starts ===========================================================
platform linux -- Python 3.10.0, pytest-8.3.5, pluggy-1.5.0
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: anyio-4.9.0, asyncio-0.26.0, nbval-0.11.0, metadata-3.1.1, html-4.1.1, cov-6.1.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function
collected 2 items
tests/unit/providers/nvidia/test_datastore.py .. [100%]
============================================================ warnings summary ============================================================
====================================================== 2 passed, 1 warning in 0.84s ======================================================
```
cc: @dglogo, @mattf, @yanxi0830
# What does this PR do?
There are new changes in repo which needs to add some additional
functions to the inference which is fixed. Also need one additional
params to pass some extra arguments to watsonx.ai
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
---------
Co-authored-by: Sajikumar JS <sajikumar.js@ibm.com>
# What does this PR do?
This addresses 2 bugs I ran into when launching a fine-tuning job with
the NVIDIA Adapter:
1. Session handling in `_make_request` helper function returns an error.
```
INFO: 127.0.0.1:55831 - "POST /v1/post-training/supervised-fine-tune HTTP/1.1" 500 Internal Server Error
16:11:45.643 [END] /v1/post-training/supervised-fine-tune [StatusCode.OK] (270.44ms)
16:11:45.643 [ERROR] Error executing endpoint route='/v1/post-training/supervised-fine-tune' method='post'
Traceback (most recent call last):
File "/Users/jgulabrai/Projects/forks/llama-stack/llama_stack/distribution/server/server.py", line 201, in endpoint
return await maybe_await(value)
File "/Users/jgulabrai/Projects/forks/llama-stack/llama_stack/distribution/server/server.py", line 161, in maybe_await
return await value
File "/Users/jgulabrai/Projects/forks/llama-stack/llama_stack/providers/remote/post_training/nvidia/post_training.py", line 408, in supervised_fine_tune
response = await self._make_request(
File "/Users/jgulabrai/Projects/forks/llama-stack/llama_stack/providers/remote/post_training/nvidia/post_training.py", line 98, in _make_request
async with self.session.request(method, url, params=params, json=json, **kwargs) as response:
File "/Users/jgulabrai/Projects/forks/llama-stack/.venv/lib/python3.10/site-packages/aiohttp/client.py", line 1425, in __aenter__
self._resp: _RetType = await self._coro
File "/Users/jgulabrai/Projects/forks/llama-stack/.venv/lib/python3.10/site-packages/aiohttp/client.py", line 579, in _request
handle = tm.start()
File "/Users/jgulabrai/Projects/forks/llama-stack/.venv/lib/python3.10/site-packages/aiohttp/helpers.py", line 587, in start
return self._loop.call_at(when, self.__call__)
File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/asyncio/base_events.py", line 724, in call_at
self._check_closed()
File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/asyncio/base_events.py", line 510, in _check_closed
raise RuntimeError('Event loop is closed')
RuntimeError: Event loop is closed
```
Note: This only occurred when initializing the client like so:
```
client = LlamaStackClient(
base_url="http://0.0.0.0:8321"
)
response = client.post_training.supervised_fine_tune(...) # Returns error
```
I didn't run into this issue when using the library client:
```
client = LlamaStackAsLibraryClient("nvidia")
client.initialize()
response = client.post_training.supervised_fine_tune(...) # Works fine
```
2. The `algorithm_config` param in `supervised_fine_tune` is parsed as a
`dict` when run from unit tests, but a Pydantic model when invoked using
the Llama Stack client. So, the call fails outside of unit tests:
```
INFO: 127.0.0.1:54024 - "POST /v1/post-training/supervised-fine-tune HTTP/1.1" 500 Internal Server Error
21:14:02.315 [END] /v1/post-training/supervised-fine-tune [StatusCode.OK] (71.18ms)
21:14:02.314 [ERROR] Error executing endpoint route='/v1/post-training/supervised-fine-tune' method='post'
Traceback (most recent call last):
File "/Users/jgulabrai/Projects/forks/llama-stack/llama_stack/distribution/server/server.py", line 205, in endpoint
return await maybe_await(value)
File "/Users/jgulabrai/Projects/forks/llama-stack/llama_stack/distribution/server/server.py", line 164, in maybe_await
return await value
File "/Users/jgulabrai/Projects/forks/llama-stack/llama_stack/providers/remote/post_training/nvidia/post_training.py", line 407, in supervised_fine_tune
"adapter_dim": algorithm_config.get("adapter_dim"),
File "/Users/jgulabrai/Projects/forks/llama-stack/.venv/lib/python3.10/site-packages/pydantic/main.py", line 891, in __getattr__
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}')
AttributeError: 'LoraFinetuningConfig' object has no attribute 'get'
```
The code assumes `algorithm_config` should be `dict`, so I just handle
both cases.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
1. I ran a local Llama Stack server with the necessary env vars:
```
lama stack run llama_stack/templates/nvidia/run.yaml --port 8321 --env ...
```
And invoked `supervised_fine_tune` to confirm neither of the errors
above occur.
```
client = LlamaStackClient(
base_url="http://0.0.0.0:8321"
)
response = client.post_training.supervised_fine_tune(...)
```
2. I confirmed the unit tests still pass: `./scripts/unit-tests.sh
tests/unit/providers/nvidia/test_supervised_fine_tuning.py`
[//]: # (## Documentation)
---------
Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
# What does this PR do?
IBM watsonx ai added as the inference [#1741
](https://github.com/meta-llama/llama-stack/issues/1741)
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
---------
Co-authored-by: Sajikumar JS <sajikumar.js@ibm.com>
# What does this PR do?
Adds custom model registration functionality to NVIDIAInferenceAdapter
which let's the inference happen on:
- post-training model
- non-llama models in API Catalogue(behind
https://integrate.api.nvidia.com and endpoints compatible with
AyncOpenAI)
## Example Usage:
```python
from llama_stack.apis.models import Model, ModelType
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient("nvidia")
_ = client.initialize()
client.models.register(
model_id=model_name,
model_type=ModelType.llm,
provider_id="nvidia"
)
response = client.inference.chat_completion(
model_id=model_name,
messages=[{"role":"system","content":"You are a helpful assistant."},{"role":"user","content":"Write a limerick about the wonders of GPU computing."}],
)
```
## Test Plan
```bash
pytest tests/unit/providers/nvidia/test_supervised_fine_tuning.py
========================================================== test session starts ===========================================================
platform linux -- Python 3.10.0, pytest-8.3.5, pluggy-1.5.0
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: anyio-4.9.0
collected 6 items
tests/unit/providers/nvidia/test_supervised_fine_tuning.py ...... [100%]
============================================================ warnings summary ============================================================
../miniconda/envs/nvidia-1/lib/python3.10/site-packages/pydantic/fields.py:1076
/home/ubuntu/miniconda/envs/nvidia-1/lib/python3.10/site-packages/pydantic/fields.py:1076: PydanticDeprecatedSince20: Using extra keyword arguments on `Field` is deprecated and will be removed. Use `json_schema_extra` instead. (Extra keys: 'contentEncoding'). Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.11/migration/
warn(
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
====================================================== 6 passed, 1 warning in 1.51s ======================================================
```
[//]: # (## Documentation)
Updated Readme.md
cc: @dglogo, @sumitb, @mattf