# What does this PR do?
The InferenceStore class was ignoring the table_name field from
InferenceStoreReference and always using the hardcoded value
"chat_completions". This meant that any custom table_name configured in
the run config (e.g., "inference_store" in run-with-postgres-store.yaml)
was silently ignored.
This change updates all SQL operations in InferenceStore to use
self.reference.table_name instead of the hardcoded string, ensuring the
configured table name is properly respected.
A new test has been added to verify that custom table names work
correctly for storing, retrieving, and listing chat completions.
## Test Plan
CI
<hr>This is an automatic backport of pull request #4371 done by
[Mergify](https://mergify.com).
Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Sébastien Han <seb@redhat.com>
Closes security gaps where RBAC checks could be bypassed:
o Inference router: Added RBAC enforcement in the fallback
path to ensure access control is applied consistently.
o Model listing: Dynamic models fetched via provider_data were returned
without RBAC checks. Added filtering to ensure users only see models
they have permission to access.
Both fixes create temporary ModelWithOwner objects for RBAC validation,
maintaining security through consistent access control enforcement.
Closes: #4269
<hr>This is an automatic backport of pull request #4270 done by
[Mergify](https://mergify.com).
Signed-off-by: Derek Higgins <derekh@redhat.com>
Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Derek Higgins <derekh@redhat.com>
The `allowed_models` configuration was only being applied when listing
models via the `/v1/models` endpoint, but the actual inference requests
weren't checking this restriction. This meant users could directly
request any model the provider supports by specifying it in their
inference call, completely bypassing the intended cost controls.
The fix adds validation to all three inference methods (chat
completions, completions, and embeddings) that checks the requested
model against the allowed_models list before making the provider API
call.
### Test plan
Added unit tests <hr>This is an automatic backport of pull request #4197
done by [Mergify](https://mergify.com).
Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
This PR fixes a bug in LlamaStack 0.3.0 where vector stores created via
the OpenAI-compatible API (`POST /v1/vector_stores`) would fail with
`VectorStoreNotFoundError` after server restart when attempting
operations like `vector_io.insert()` or `vector_io.query()`.
The bug affected **6 vector IO providers**: `pgvector`, `sqlite_vec`,
`chroma`, `milvus`, `qdrant`, and `weaviate`.
Created with the assistance of: claude-4.5-sonnet
## Root Cause
All affected providers had a broken
`_get_and_cache_vector_store_index()` method that:
1. Did not load existing vector stores from persistent storage during
initialization
2. Attempted to use `vector_store_table` (which was either `None` or a
`KVStore` without the required `get_vector_store()` method)
3. Could not reload vector stores after server restart or cache miss
## Solution
This PR implements a consistent pattern across all 6 providers:
1. **Load vector stores during initialization** - Pre-populate the cache
from KV store on startup
2. **Fix lazy loading** - Modified `_get_and_cache_vector_store_index()`
to load directly from KV store instead of relying on
`vector_store_table`
3. **Remove broken dependency** - Eliminated reliance on the
`vector_store_table` pattern
## Testing steps
### 1.1 Configure the stack
Create or use an existing configuration with a vector IO provider.
**Example `run.yaml`:**
```yaml
vector_io_store:
- provider_id: pgvector
provider_type: remote::pgvector
config:
host: localhost
port: 5432
db: llamastack
user: llamastack
password: llamastack
inference:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config:
model: sentence-transformers/all-MiniLM-L6-v2
```
### 1.2 Start the server
```bash
llama stack run run.yaml --port 5000
```
Wait for the server to fully start. You should see:
```
INFO: Started server process
INFO: Application startup complete
```
---
## Step 2: Create a Vector Store
### 2.1 Create via API
```bash
curl -X POST http://localhost:5000/v1/vector_stores \
-H "Content-Type: application/json" \
-d '{
"name": "test-persistence-store",
"extra_body": {
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
"embedding_dimension": 384,
"provider_id": "pgvector"
}
}' | jq
```
### 2.2 Expected Response
```json
{
"id": "vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d",
"object": "vector_store",
"name": "test-persistence-store",
"status": "completed",
"created_at": 1730304000,
"file_counts": {
"total": 0,
"completed": 0,
"in_progress": 0,
"failed": 0,
"cancelled": 0
},
"usage_bytes": 0
}
```
**Save the `id` field** (e.g.,
`vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d`) — you’ll need it for the next
steps.
---
## Step 3: Insert Data (Before Restart)
### 3.1 Insert chunks into the vector store
```bash
export VS_ID="vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d"
curl -X POST http://localhost:5000/vector-io/insert \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"chunks\": [
{
\"content\": \"Python is a high-level programming language known for its readability.\",
\"metadata\": {\"source\": \"doc1\", \"page\": 1}
},
{
\"content\": \"Machine learning enables computers to learn from data without explicit programming.\",
\"metadata\": {\"source\": \"doc2\", \"page\": 1}
},
{
\"content\": \"Neural networks are inspired by biological neurons in the brain.\",
\"metadata\": {\"source\": \"doc3\", \"page\": 1}
}
]
}"
```
### 3.2 Expected Response
Status: **200 OK**
Response: *Empty or success confirmation*
---
## Step 4: Query Data (Before Restart – Baseline)
### 4.1 Query the vector store
```bash
curl -X POST http://localhost:5000/vector-io/query \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"query\": \"What is machine learning?\"
}" | jq
```
### 4.2 Expected Response
```json
{
"chunks": [
{
"content": "Machine learning enables computers to learn from data without explicit programming.",
"metadata": {"source": "doc2", "page": 1}
},
{
"content": "Neural networks are inspired by biological neurons in the brain.",
"metadata": {"source": "doc3", "page": 1}
}
],
"scores": [0.85, 0.72]
}
```
**Checkpoint:** Works correctly before restart.
---
## Step 5: Restart the Server (Critical Test)
### 5.1 Stop the server
In the terminal where it’s running:
```
Ctrl + C
```
Wait for:
```
Shutting down...
```
### 5.2 Restart the server
```bash
llama stack run run.yaml --port 5000
```
Wait for:
```
INFO: Started server process
INFO: Application startup complete
```
The vector store cache is now empty, but data should persist.
---
## Step 6: Verify Vector Store Exists (After Restart)
### 6.1 List vector stores
```bash
curl http://localhost:5000/v1/vector_stores | jq
```
### 6.2 Expected Response
```json
{
"object": "list",
"data": [
{
"id": "vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d",
"name": "test-persistence-store",
"status": "completed"
}
]
}
```
**Checkpoint:** Vector store should be listed.
---
## Step 7: Insert Data (After Restart – THE BUG TEST)
### 7.1 Insert new chunks
```bash
curl -X POST http://localhost:5000/vector-io/insert \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"chunks\": [
{
\"content\": \"This chunk was inserted AFTER the server restart.\",
\"metadata\": {\"source\": \"post-restart\", \"test\": true}
}
]
}"
```
### 7.2 Expected Results
**With Fix (Correct):**
```
Status: 200 OK
Response: Success
```
**Without Fix (Bug):**
```json
{
"detail": "VectorStoreNotFoundError: Vector Store 'vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d' not found."
}
```
**Critical Test:** If insertion succeeds, the fix works.
---
## Step 8: Query Data (After Restart – Verification)
### 8.1 Query all data
```bash
curl -X POST http://localhost:5000/vector-io/query \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"query\": \"restart\"
}" | jq
```
### 8.2 Expected Response
```json
{
"chunks": [
{
"content": "This chunk was inserted AFTER the server restart.",
"metadata": {"source": "post-restart", "test": true}
}
],
"scores": [0.95]
}
```
**Checkpoint:** Both old and new data are queryable.
---
## Step 9: Multiple Restart Test (Extra Verification)
### 9.1 Restart again
```bash
Ctrl + C
llama stack run run.yaml --port 5000
```
### 9.2 Query after restart
```bash
curl -X POST http://localhost:5000/vector-io/query \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"query\": \"programming\"
}" | jq
```
**Expected:** Works correctly across multiple restarts.
<hr>This is an automatic backport of pull request #3977 done by
[Mergify](https://mergify.com).
Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Juan Pérez de Algaba <124347725+jperezdealgaba@users.noreply.github.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
# What does this PR do?
closes#4022
## Test Plan
ci w/ new tests<hr>This is an automatic backport of pull request #4030
done by [Mergify](https://mergify.com).
Co-authored-by: Matthew Farrellee <matt@cs.wisc.edu>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
Cherry-pick of #3974 to release-0.3.x branch.
## Summary
- Fixes handling of missing external_providers_dir in stack
configuration
## Original PR
Fixes from #3974
Signed-off-by: Doug Edgar <dedgar@redhat.com>
Co-authored-by: Doug Edgar <dedgar@redhat.com>
## Summary
Cherry-picks 5 critical fixes from main to the release-0.3.x branch for
the v0.3.1 release, plus CI workflow updates.
**Note**: This recreates the cherry-picks from the closed PR #3991, now
targeting the renamed `release-0.3.x` branch (previously
`release-0.3.x-maint`).
## Commits
1. **2c56a8560** - fix(context): prevent provider data leak between
streaming requests (#3924)
- **CRITICAL SECURITY FIX**: Prevents provider credentials from leaking
between requests
- Fixed import path for 0.3.0 compatibility
2. **ddd32b187** - fix(inference): enable routing of models with
provider_data alone (#3928)
- Enables routing for fully qualified model IDs with provider_data
- Resolved merge conflicts, adapted for 0.3.0 structure
3. **f7c2973aa** - fix: Avoid BadRequestError due to invalid max_tokens
(#3667)
- Fixes failures with Gemini and other providers that reject
max_tokens=0
- Non-breaking API change
4. **d7f9da616** - fix(responses): sync conversation before yielding
terminal events in streaming (#3888)
- Ensures conversation sync executes even when streaming consumers break
early
5. **0ffa8658b** - fix(logging): ensure logs go to stderr, loggers obey
levels (#3885)
- Fixes logging infrastructure
6. **75b49cb3c** - ci: support release branches and match client branch
(#3990)
- Updates CI workflows to support release-X.Y.x branches
- Matches client branch from llama-stack-client-python for release
testing
- Fixes artifact name collisions
## Adaptations for 0.3.0
- Fixed import paths: `llama_stack.core.telemetry.tracing` →
`llama_stack.providers.utils.telemetry.tracing`
- Fixed import paths: `llama_stack.core.telemetry.telemetry` →
`llama_stack.apis.telemetry`
- Changed `self.telemetry_enabled` → `self.telemetry` (0.3.0 attribute
name)
- Removed `rerank()` method that doesn't exist in 0.3.0
## Testing
All imports verified and tests should pass once CI is set up.
# What does this PR do?
metadata is conflicting with the default embedding model set on server
side via extra body, removing the check and just letting metadata take
precedence over extra body
`ValueError: Embedding model inconsistent between metadata
('text-embedding-3-small') and extra_body
('sentence-transformers/nomic-ai/nomic-embed-text-v1.5')`
## Test Plan
CI
Kill the `builtin::rag` tool group completely since it is no longer
targeted. We use the Responses implementation for knowledge_search which
uses the `openai_vector_stores` pathway.
---------
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
# What does this PR do?
Refactor setting default vector store provider and embedding model to
use an optional `vector_stores` config in the `StackRunConfig` and clean
up code to do so (had to add back in some pieces of VectorDB). Also
added remote Qdrant and Weaviate to starter distro (based on other PR
where inference providers were added for UX).
New config is simply (default for Starter distro):
```yaml
vector_stores:
default_provider_id: faiss
default_embedding_model:
provider_id: sentence-transformers
model_id: nomic-ai/nomic-embed-text-v1.5
```
## Test Plan
CI and Unit tests.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
**This PR changes configurations in a backward incompatible way.**
Run configs today repeat full SQLite/Postgres snippets everywhere a
store is needed, which means duplicated credentials, extra connection
pools, and lots of drift between files. This PR introduces named storage
backends so the stack and providers can share a single catalog and
reference those backends by name.
## Key Changes
- Add `storage.backends` to `StackRunConfig`, register each KV/SQL
backend once at startup, and validate that references point to the right
family.
- Move server stores under `storage.stores` with lightweight references
(backend + namespace/table) instead of full configs.
- Update every provider/config/doc to use the new reference style;
docs/codegen now surface the simplified YAML.
## Migration
Before:
```yaml
metadata_store:
type: sqlite
db_path: ~/.llama/distributions/foo/registry.db
inference_store:
type: postgres
host: ${env.POSTGRES_HOST}
port: ${env.POSTGRES_PORT}
db: ${env.POSTGRES_DB}
user: ${env.POSTGRES_USER}
password: ${env.POSTGRES_PASSWORD}
conversations_store:
type: postgres
host: ${env.POSTGRES_HOST}
port: ${env.POSTGRES_PORT}
db: ${env.POSTGRES_DB}
user: ${env.POSTGRES_USER}
password: ${env.POSTGRES_PASSWORD}
```
After:
```yaml
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ~/.llama/distributions/foo/kvstore.db
sql_default:
type: sql_postgres
host: ${env.POSTGRES_HOST}
port: ${env.POSTGRES_PORT}
db: ${env.POSTGRES_DB}
user: ${env.POSTGRES_USER}
password: ${env.POSTGRES_PASSWORD}
stores:
metadata:
backend: kv_default
namespace: registry
inference:
backend: sql_default
table_name: inference_store
max_write_queue_size: 10000
num_writers: 4
conversations:
backend: sql_default
table_name: openai_conversations
```
Provider configs follow the same pattern—for example, a Chroma vector
adapter switches from:
```yaml
providers:
vector_io:
- provider_id: chromadb
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL}
kvstore:
type: sqlite
db_path: ~/.llama/distributions/foo/chroma.db
```
to:
```yaml
providers:
vector_io:
- provider_id: chromadb
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL}
persistence:
backend: kv_default
namespace: vector_io::chroma_remote
```
Once the backends are declared, everything else just points at them, so
rotating credentials or swapping to Postgres happens in one place and
the stack reuses a single connection pool.
# Problem
The current inline provider appends the user provided instructions to
messages as a system prompt, but the returned response object does not
contain the instructions field (as specified in the OpenAI responses
spec).
# What does this PR do?
This pull request adds the instruction field to the response object
definition and updates the inline provider. It also ensures that
instructions from previous response is not carried over to the next
response (as specified in the openAI spec).
Closes #[3566](https://github.com/llamastack/llama-stack/issues/3566)
## Test Plan
- Tested manually for change in model response w.r.t supplied
instructions field.
- Added unit test to check that the instructions from previous response
is not carried over to the next response.
- Added integration tests to check instructions parameter in the
returned response object.
- Added new recordings for the integration tests.
---------
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
fix: nested claims mapping in OAuth2 token validation
The get_attributes_from_claims function was only checking for top-level
claim keys, causing token validation to fail when using nested claims
like "resource_access.llamastack.roles" (common in Keycloak JWT tokens).
Updated the function to support dot notation for traversing nested claim
structures. Give precedence to dot notation over literal keys with dots
in claims mapping.
Added test coverage.
Closes: #3812
Signed-off-by: Derek Higgins <derekh@redhat.com>
# What does this PR do?
remove telemetry as a providable API from the codebase. This includes
removing it from generated distributions but also the provider registry,
the router, etc
since `setup_logger` is tied pretty strictly to `Api.telemetry` being in
impls we still need an "instantiated provider" in our implementations.
However it should not be auto-routed or provided. So in
validate_and_prepare_providers (called from resolve_impls) I made it so
that if run_config.telemetry.enabled, we set up the meta-reference
"provider" internally to be used so that log_event will work when
called.
This is the neatest way I think we can remove telemetry from the
provider configs but also not need to rip apart the whole "telemetry is
a provider" logic just yet, but we can do it internally later without
disrupting users.
so telemetry is removed from the registry such that if a user puts
`telemetry:` as an API in their build/run config it will err out, but
can still be used by us internally as we go through this transition.
relates to #3806
Signed-off-by: Charlie Doern <cdoern@redhat.com>
As indicated in the title. Our `starter` distribution enables all remote
providers _very intentionally_ because we believe it creates an easier,
more welcoming experience to new folks using the software. If we do
that, and then slam the logs with errors making them question their life
choices, it is not so good :)
Note that this fix is limited in scope. If you ever try to actually
instantiate the OpenAI client from a code path without an API key being
present, you deserve to fail hard.
## Test Plan
Run `llama stack run starter` with `OPENAI_API_KEY` set. No more wall of
text, just one message saying "listed 96 models".
a bunch of logger.info()s are good for server code to help debug in
production, but we don't want them killing our unit test output :)
---------
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
**!!BREAKING CHANGE!!**
The lookup is also straightforward -- we always look for this identifier
and don't try to find a match for something without the provider_id
prefix.
Note that, this ideally means we need to update the `register_model()`
API also (we should kill "identifier" from there) but I am not doing
that as part of this PR.
## Test Plan
Existing unit tests
# What does this PR do?
Have closed the previous PR due to merge conflicts with multiple PRs
Addressed all comments from
https://github.com/llamastack/llama-stack/pull/3768 (sorry for carrying
over to this one)
## Test Plan
Added UTs and integration tests
Fixed KeyError when chunks don't have document_id in metadata or
chunk_metadata. Updated logging to safely extract document_id using
getattr and RAG memory to handle different document_id locations. Added
test for missing document_id scenarios.
Fixes issue #3494 where /v1/vector-io/insert would crash with KeyError.
Fixed KeyError when chunks don't have document_id in metadata or
chunk_metadata. Updated logging to safely extract document_id using
getattr and RAG memory to handle different document_id locations. Added
test for missing document_id scenarios.
# What does this PR do?
Fixes a KeyError crash in `/v1/vector-io/insert` when chunks are missing
`document_id` fields. The API
was failing even though `document_id` is optional according to the
schema.
Closes#3494
## Test Plan
**Before fix:**
- POST to `/v1/vector-io/insert` with chunks → 500 KeyError
- Happened regardless of where `document_id` was placed
**After fix:**
- Same request works fine → 200 OK
- Tested with Postman using FAISS backend
- Added unit test covering missing `document_id` scenarios
This PR updates the Conversation item related types and improves a
couple critical parts of the implemenation:
- it creates a streaming output item for the final assistant message
output by
the model. until now we only added content parts and included that
message in the final response.
- rewrites the conversation update code completely to account for items
other than messages (tool calls, outputs, etc.)
## Test Plan
Used the test script from
https://github.com/llamastack/llama-stack-client-python/pull/281 for
this
```
TEST_API_BASE_URL=http://localhost:8321/v1 \
pytest tests/integration/test_agent_turn_step_events.py::test_client_side_function_tool -xvs
```
# What does this PR do?
Enables automatic embedding model detection for vector stores and by
using a `default_configured` boolean that can be defined in the
`run.yaml`.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
- Unit tests
- Integration tests
- Simple example below:
Spin up the stack:
```bash
uv run llama stack build --distro starter --image-type venv --run
```
Then test with OpenAI's client:
```python
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none")
vs = client.vector_stores.create()
```
Previously you needed:
```python
vs = client.vector_stores.create(
extra_body={
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
"embedding_dimension": 384,
}
)
```
The `extra_body` is now unnecessary.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
The purpose of this PR is to replace the Llama Stack's default embedding
model by nomic-embed-text-v1.5.
These are the key reasons why Llama Stack community decided to switch
from all-MiniLM-L6-v2 to nomic-embed-text-v1.5:
1. The training data for
[all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2#training-data)
includes a lot of data sets with various licensing terms, so it is
tricky to know when/whether it is appropriate to use this model for
commercial applications.
2. The model is not particularly competitive on major benchmarks. For
example, if you look at the [MTEB
Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) and click
on Miscellaneous/BEIR to see English information retrieval accuracy, you
see that the top of the leaderboard is dominated by enormous models but
also that there are many, many models of relatively modest size whith
much higher Retrieval scores. If you want to look closely at the data, I
recommend clicking "Download Table" because it is easier to browse that
way.
More discussion info can be founded
[here](https://github.com/llamastack/llama-stack/issues/2418)
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#2418
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
1. Run `./scripts/unit-tests.sh`
2. Integration tests via CI wokrflow
---------
Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
Co-authored-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This commit migrates the authentication system from python-jose to PyJWT
to eliminate the dependency on the archived rsa package. The migration
includes:
- Refactored OAuth2TokenAuthProvider to use PyJWT's PyJWKClient for
clean JWKS handling
- Removed manual JWKS fetching, caching and key extraction logic in
favor of PyJWT's built-in functionality
The new implementation is cleaner, more maintainable, and follows PyJWT
best practices while maintaining full backward compatibility.
## Test Plan
Unit tests. Auth CI.
---------
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
2 main changes:
1. Remove `provider_id` requirement in call to vector stores and
2. Removes "register first embedding model" logic
- Now forces embedding model id as required on Vector Store creation
Simplifies the UX for OpenAI to:
```python
vs = client.vector_stores.create(
name="my_citations_db",
extra_body={
"embedding_model": "ollama/nomic-embed-text:latest",
}
)
```
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Applies the same pattern from
https://github.com/llamastack/llama-stack/pull/3777 to embeddings and
vector_stores.create() endpoints.
This should _not_ be a breaking change since (a) our tests were already
using the `extra_body` parameter when passing in to the backend (b) but
the backend probably wasn't extracting the parameters correctly. This PR
will fix that.
Updated APIs: `openai_embeddings(), openai_create_vector_store(),
openai_create_vector_store_file_batch()`
# What does this PR do?
Removes VectorDBs from API surface and our tests.
Moves tests to Vector Stores.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
Allows passing through extra_body parameters to inference providers.
With this, we removed the 2 vllm-specific parameters from completions
API into `extra_body`.
Before/After
<img width="1883" height="324" alt="image"
src="https://github.com/user-attachments/assets/acb27c08-c748-46c9-b1da-0de64e9908a1"
/>
closes#2720
## Test Plan
CI and added new test
```
❯ uv run pytest -s -v tests/integration/ --stack-config=server:starter --inference-mode=record -k 'not( builtin_tool or safety_with_image or code_interpreter or test_rag ) and test_openai_completion_guided_choice' --setup=vllm --suite=base --color=yes
Uninstalled 3 packages in 125ms
Installed 3 packages in 19ms
INFO 2025-10-10 14:29:54,317 tests.integration.conftest:118 tests: Applying setup 'vllm' for suite base
INFO 2025-10-10 14:29:54,331 tests.integration.conftest:47 tests: Test stack config type: server
(stack_config=server:starter)
============================================================================================================== test session starts ==============================================================================================================
platform darwin -- Python 3.12.11, pytest-8.4.2, pluggy-1.6.0 -- /Users/erichuang/projects/llama-stack-1/.venv/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.12.11', 'Platform': 'macOS-15.6.1-arm64-arm-64bit', 'Packages': {'pytest': '8.4.2', 'pluggy': '1.6.0'}, 'Plugins': {'anyio': '4.9.0', 'html': '4.1.1', 'socket': '0.7.0', 'asyncio': '1.1.0', 'json-report': '1.5.0', 'timeout': '2.4.0', 'metadata': '3.1.1', 'cov': '6.2.1', 'nbval': '0.11.0'}}
rootdir: /Users/erichuang/projects/llama-stack-1
configfile: pyproject.toml
plugins: anyio-4.9.0, html-4.1.1, socket-0.7.0, asyncio-1.1.0, json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, cov-6.2.1, nbval-0.11.0
asyncio: mode=Mode.AUTO, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function
collected 285 items / 284 deselected / 1 selected
tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B]
instantiating llama_stack_client
Starting llama stack server with config 'starter' on port 8321...
Waiting for server at http://localhost:8321... (0.0s elapsed)
Waiting for server at http://localhost:8321... (0.5s elapsed)
Waiting for server at http://localhost:8321... (5.1s elapsed)
Waiting for server at http://localhost:8321... (5.6s elapsed)
Waiting for server at http://localhost:8321... (10.1s elapsed)
Waiting for server at http://localhost:8321... (10.6s elapsed)
Server is ready at http://localhost:8321
llama_stack_client instantiated in 11.773s
PASSEDTerminating llama stack server process...
Terminating process 98444 and its group...
Server process and children terminated gracefully
============================================================================================================= slowest 10 durations ==============================================================================================================
11.88s setup tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B]
3.02s call tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B]
0.01s teardown tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B]
================================================================================================ 1 passed, 284 deselected, 3 warnings in 16.21s =================================================================================================
```
# What does this PR do?
Converts openai(_chat)_completions params to pydantic BaseModel to
reduce code duplication across all providers.
## Test Plan
CI
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with
[ReviewStack](https://reviewstack.dev/llamastack/llama-stack/pull/3761).
* #3777
* __->__ #3761
The AuthenticationMiddleware was blocking all requests without an
Authorization header, including health and version endpoints that are
needed by monitoring tools, load balancers, and Kubernetes probes.
This commit allows endpoints ending in /health or /version to bypass
authentication, enabling operational tooling to function properly
without requiring credentials.
Closes: #3735
Signed-off-by: Derek Higgins <derekh@redhat.com>
Implementats usage accumulation to StreamingResponseOrchestrator.
The most important part was to pass `stream_options = { "include_usage":
true }` to the chat_completion call. This means I will have to record
all responses tests again because request hash will change :)
Test changes:
- Add usage assertions to streaming and non-streaming tests
- Update test recordings with actual usage data from OpenAI
# What does this PR do?
This PR checks whether, if a previous response is linked, there are
mcp_list_tools objects that can be reused instead of listing the tools
explicitly every time.
Closes#3106
## Test Plan
Tested manually.
Added unit tests to cover new behaviour.
---------
Signed-off-by: Gordon Sim <gsim@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
use SecretStr for OpenAIMixin providers
- RemoteInferenceProviderConfig now has auth_credential: SecretStr
- the default alias is api_key (most common name)
- some providers override to use api_token (RunPod, vLLM, Databricks)
- some providers exclude it (Ollama, TGI, Vertex AI)
addresses #3517
## Test Plan
ci w/ new tests
# What does this PR do?
objects (vector dbs, models, scoring functions, etc) have an identifier
and associated object values.
we allow exact duplicate registrations.
we reject registrations when the identifier exists and the associated
object values differ.
note: model are namespaced, i.e. {provider_id}/{identifier}, while other
object types are not
## Test Plan
ci w/ new tests
Replaces opaque error messages when recordings are not found with
somewhat better guidance
Before:
```
No recorded response found for request hash: abc123...
To record this response, run with LLAMA_STACK_TEST_INFERENCE_MODE=record
```
After:
```
Recording not found for request hash: abc123
Model: gpt-4 | Request: POST https://api.openai.com/v1/chat/completions
Run './scripts/integration-tests.sh --inference-mode record-if-missing' with required API keys to generate.
```
These vector databases are already thoroughly tested in integration
tests.
Unit tests now focus on sqlite_vec, faiss, and pgvector with mocked
dependencies, removing the need for external service dependencies.
## Changes:
- Deleted test_qdrant.py unit test file
- Removed chroma/qdrant fixtures and parametrization from conftest.py
- Fixed SqliteKVStoreConfig import to use correct location
- Removed chromadb, qdrant-client, pymilvus, milvus-lite, and
weaviate-client from unit test dependencies in pyproject.toml
Renames `inference_recorder.py` to `api_recorder.py` and extends it to
support recording/replaying tool invocations in addition to inference
calls.
This allows us to record web-search, etc. tool calls and thereafter
apply recordings for `tests/integration/responses`
## Test Plan
```
export OPENAI_API_KEY=...
export TAVILY_SEARCH_API_KEY=...
./scripts/integration-tests.sh --stack-config ci-tests \
--suite responses --inference-mode record-if-missing
```
# What does this PR do?
Removing Weaviate, PostGres, and Milvus unit tests
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
- The watsonx.ai provider now uses the LiteLLM mixin instead of using
IBM's library, which does not seem to be working (see #3165 for
context).
- The watsonx.ai provider now lists all the models available by calling
the watsonx.ai server instead of having a hard coded list of known
models. (That list gets out of date quickly)
- An edge case in
[llama_stack/core/routers/inference.py](https://github.com/llamastack/llama-stack/pull/3674/files#diff-a34bc966ed9befd9f13d4883c23705dff49be0ad6211c850438cdda6113f3455)
is addressed that was causing my manual tests to fail.
- Fixes `b64_encode_openai_embeddings_response` which was trying to
enumerate over a dictionary and then reference elements of the
dictionary using .field instead of ["field"]. That method is called by
the LiteLLM mixin for embedding models, so it is needed to get the
watsonx.ai embedding models to work.
- A unit test along the lines of the one in #3348 is added. A more
comprehensive plan for automatically testing the end-to-end
functionality for inference providers would be a good idea, but is out
of scope for this PR.
- Updates to the watsonx distribution. Some were in response to the
switch to LiteLLM (e.g., updating the Python packages needed). Others
seem to be things that were already broken that I found along the way
(e.g., a reference to a watsonx specific doc template that doesn't seem
to exist).
Closes#3165
Also it is related to a line-item in #3387 but doesn't really address
that goal (because it uses the LiteLLM mixin, not the OpenAI one). I
tried the OpenAI one and it doesn't work with watsonx.ai, presumably
because the watsonx.ai service is not OpenAI compatible. It works with
LiteLLM because LiteLLM has a provider implementation for watsonx.ai.
## Test Plan
The test script below goes back and forth between the OpenAI and watsonx
providers. The idea is that the OpenAI provider shows how it should work
and then the watsonx provider output shows that it is also working with
watsonx. Note that the result from the MCP test is not as good (the
Llama 3.3 70b model does not choose tools as wisely as gpt-4o), but it
is still working and providing a valid response. For more details on
setup and the MCP server being used for testing, see [the AI Alliance
sample
notebook](https://github.com/The-AI-Alliance/llama-stack-examples/blob/main/notebooks/01-responses/)
that these examples are drawn from.
```python
#!/usr/bin/env python3
import json
from llama_stack_client import LlamaStackClient
from litellm import completion
import http.client
def print_response(response):
"""Print response in a nicely formatted way"""
print(f"ID: {response.id}")
print(f"Status: {response.status}")
print(f"Model: {response.model}")
print(f"Created at: {response.created_at}")
print(f"Output items: {len(response.output)}")
for i, output_item in enumerate(response.output):
if len(response.output) > 1:
print(f"\n--- Output Item {i+1} ---")
print(f"Output type: {output_item.type}")
if output_item.type in ("text", "message"):
print(f"Response content: {output_item.content[0].text}")
elif output_item.type == "file_search_call":
print(f" Tool Call ID: {output_item.id}")
print(f" Tool Status: {output_item.status}")
# 'queries' is a list, so we join it for clean printing
print(f" Queries: {', '.join(output_item.queries)}")
# Display results if they exist, otherwise note they are empty
print(f" Results: {output_item.results if output_item.results else 'None'}")
elif output_item.type == "mcp_list_tools":
print_mcp_list_tools(output_item)
elif output_item.type == "mcp_call":
print_mcp_call(output_item)
else:
print(f"Response content: {output_item.content}")
def print_mcp_call(mcp_call):
"""Print MCP call in a nicely formatted way"""
print(f"\n🛠️ MCP Tool Call: {mcp_call.name}")
print(f" Server: {mcp_call.server_label}")
print(f" ID: {mcp_call.id}")
print(f" Arguments: {mcp_call.arguments}")
if mcp_call.error:
print("Error: {mcp_call.error}")
elif mcp_call.output:
print("Output:")
# Try to format JSON output nicely
try:
parsed_output = json.loads(mcp_call.output)
print(json.dumps(parsed_output, indent=4))
except:
# If not valid JSON, print as-is
print(f" {mcp_call.output}")
else:
print(" ⏳ No output yet")
def print_mcp_list_tools(mcp_list_tools):
"""Print MCP list tools in a nicely formatted way"""
print(f"\n🔧 MCP Server: {mcp_list_tools.server_label}")
print(f" ID: {mcp_list_tools.id}")
print(f" Available Tools: {len(mcp_list_tools.tools)}")
print("=" * 80)
for i, tool in enumerate(mcp_list_tools.tools, 1):
print(f"\n{i}. {tool.name}")
print(f" Description: {tool.description}")
# Parse and display input schema
schema = tool.input_schema
if schema and 'properties' in schema:
properties = schema['properties']
required = schema.get('required', [])
print(" Parameters:")
for param_name, param_info in properties.items():
param_type = param_info.get('type', 'unknown')
param_desc = param_info.get('description', 'No description')
required_marker = " (required)" if param_name in required else " (optional)"
print(f" • {param_name} ({param_type}){required_marker}")
if param_desc:
print(f" {param_desc}")
if i < len(mcp_list_tools.tools):
print("-" * 40)
def main():
"""Main function to run all the tests"""
# Configuration
LLAMA_STACK_URL = "http://localhost:8321/"
LLAMA_STACK_MODEL_IDS = [
"openai/gpt-3.5-turbo",
"openai/gpt-4o",
"llama-openai-compat/Llama-3.3-70B-Instruct",
"watsonx/meta-llama/llama-3-3-70b-instruct"
]
# Using gpt-4o for this demo, but feel free to try one of the others or add more to run.yaml.
OPENAI_MODEL_ID = LLAMA_STACK_MODEL_IDS[1]
WATSONX_MODEL_ID = LLAMA_STACK_MODEL_IDS[-1]
NPS_MCP_URL = "http://localhost:3005/sse/"
print("=== Llama Stack Testing Script ===")
print(f"Using OpenAI model: {OPENAI_MODEL_ID}")
print(f"Using WatsonX model: {WATSONX_MODEL_ID}")
print(f"MCP URL: {NPS_MCP_URL}")
print()
# Initialize client
print("Initializing LlamaStackClient...")
client = LlamaStackClient(base_url="http://localhost:8321")
# Test 1: List models
print("\n=== Test 1: List Models ===")
try:
models = client.models.list()
print(f"Found {len(models)} models")
except Exception as e:
print(f"Error listing models: {e}")
raise e
# Test 2: Basic chat completion with OpenAI
print("\n=== Test 2: Basic Chat Completion (OpenAI) ===")
try:
chat_completion_response = client.chat.completions.create(
model=OPENAI_MODEL_ID,
messages=[{"role": "user", "content": "What is the capital of France?"}]
)
print("OpenAI Response:")
for chunk in chat_completion_response.choices[0].message.content:
print(chunk, end="", flush=True)
print()
except Exception as e:
print(f"Error with OpenAI chat completion: {e}")
raise e
# Test 3: Basic chat completion with WatsonX
print("\n=== Test 3: Basic Chat Completion (WatsonX) ===")
try:
chat_completion_response_wxai = client.chat.completions.create(
model=WATSONX_MODEL_ID,
messages=[{"role": "user", "content": "What is the capital of France?"}],
)
print("WatsonX Response:")
for chunk in chat_completion_response_wxai.choices[0].message.content:
print(chunk, end="", flush=True)
print()
except Exception as e:
print(f"Error with WatsonX chat completion: {e}")
raise e
# Test 4: Tool calling with OpenAI
print("\n=== Test 4: Tool Calling (OpenAI) ===")
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather for a specific location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g., San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
},
},
"required": ["location"],
},
},
}
]
messages = [
{"role": "user", "content": "What's the weather like in Boston, MA?"}
]
try:
print("--- Initial API Call ---")
response = client.chat.completions.create(
model=OPENAI_MODEL_ID,
messages=messages,
tools=tools,
tool_choice="auto", # "auto" is the default
)
print("OpenAI tool calling response received")
except Exception as e:
print(f"Error with OpenAI tool calling: {e}")
raise e
# Test 5: Tool calling with WatsonX
print("\n=== Test 5: Tool Calling (WatsonX) ===")
try:
wxai_response = client.chat.completions.create(
model=WATSONX_MODEL_ID,
messages=messages,
tools=tools,
tool_choice="auto", # "auto" is the default
)
print("WatsonX tool calling response received")
except Exception as e:
print(f"Error with WatsonX tool calling: {e}")
raise e
# Test 6: Streaming with WatsonX
print("\n=== Test 6: Streaming Response (WatsonX) ===")
try:
chat_completion_response_wxai_stream = client.chat.completions.create(
model=WATSONX_MODEL_ID,
messages=[{"role": "user", "content": "What is the capital of France?"}],
stream=True
)
print("Model response: ", end="")
for chunk in chat_completion_response_wxai_stream:
# Each 'chunk' is a ChatCompletionChunk object.
# We want the content from the 'delta' attribute.
if hasattr(chunk, 'choices') and chunk.choices is not None:
content = chunk.choices[0].delta.content
# The first few chunks might have None content, so we check for it.
if content is not None:
print(content, end="", flush=True)
print()
except Exception as e:
print(f"Error with streaming: {e}")
raise e
# Test 7: MCP with OpenAI
print("\n=== Test 7: MCP Integration (OpenAI) ===")
try:
mcp_llama_stack_client_response = client.responses.create(
model=OPENAI_MODEL_ID,
input="Tell me about some parks in Rhode Island, and let me know if there are any upcoming events at them.",
tools=[
{
"type": "mcp",
"server_url": NPS_MCP_URL,
"server_label": "National Parks Service tools",
"allowed_tools": ["search_parks", "get_park_events"],
}
]
)
print_response(mcp_llama_stack_client_response)
except Exception as e:
print(f"Error with MCP (OpenAI): {e}")
raise e
# Test 8: MCP with WatsonX
print("\n=== Test 8: MCP Integration (WatsonX) ===")
try:
mcp_llama_stack_client_response = client.responses.create(
model=WATSONX_MODEL_ID,
input="What is the capital of France?"
)
print_response(mcp_llama_stack_client_response)
except Exception as e:
print(f"Error with MCP (WatsonX): {e}")
raise e
# Test 9: MCP with Llama 3.3
print("\n=== Test 9: MCP Integration (Llama 3.3) ===")
try:
mcp_llama_stack_client_response = client.responses.create(
model=WATSONX_MODEL_ID,
input="Tell me about some parks in Rhode Island, and let me know if there are any upcoming events at them.",
tools=[
{
"type": "mcp",
"server_url": NPS_MCP_URL,
"server_label": "National Parks Service tools",
"allowed_tools": ["search_parks", "get_park_events"],
}
]
)
print_response(mcp_llama_stack_client_response)
except Exception as e:
print(f"Error with MCP (Llama 3.3): {e}")
raise e
# Test 10: Embeddings
print("\n=== Test 10: Embeddings ===")
try:
conn = http.client.HTTPConnection("localhost:8321")
payload = json.dumps({
"model": "watsonx/ibm/granite-embedding-278m-multilingual",
"input": "Hello, world!",
})
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json'
}
conn.request("POST", "/v1/openai/v1/embeddings", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))
except Exception as e:
print(f"Error with Embeddings: {e}")
raise e
print("\n=== Testing Complete ===")
if __name__ == "__main__":
main()
```
---------
Signed-off-by: Bill Murdock <bmurdock@redhat.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
When the user wants to change the attributes (which could include model
name, dimensions,...etc) of an already registered provider, they will
get an error message asking that they first unregister the provider
before registering a new one.
# What does this PR do?
This PR updated the register function to raise an error to the user when
they attempt to register a provider that was already registered asking
them to un-register the existing provider first.
<!-- If resolving an issue, uncomment and update the line below -->
#2313
## Test Plan
Tested the change with /tests/unit/registry/test_registry.py
---------
Co-authored-by: Omar Abdelwahab <omara@fb.com>
# What does this PR do?
Have been running into flaky unit test failures:
5217035494
Fixing below
1. Shutting down properly by cancelling any stale file batches tasks
running in background.
2. Also, use unique_kvstore_config, so the test dont use same db path
and maintain test isolation
## Test Plan
Ran unit test locally and CI