Summary:
Need this to format the completion message with tool_calls correctly.
See added unittest.
Test Plan:
python -m unittest
llama_stack.providers.tests.inference.test_prompt_adapter
# What does this PR do?
We have support for embeddings in our Inference providers, but so far we
haven't done the final step of actually registering the known embedding
models and making sure they are extremely easy to use. This is one step
towards that.
## Test Plan
Run existing inference tests.
```bash
$ cd llama_stack/providers/tests/inference
$ pytest -s -v -k fireworks test_embeddings.py \
--inference-model nomic-ai/nomic-embed-text-v1.5 --env EMBEDDING_DIMENSION=784
$ pytest -s -v -k together test_embeddings.py \
--inference-model togethercomputer/m2-bert-80M-8k-retrieval --env EMBEDDING_DIMENSION=784
$ pytest -s -v -k ollama test_embeddings.py \
--inference-model all-minilm:latest --env EMBEDDING_DIMENSION=784
```
The value of the EMBEDDING_DIMENSION isn't actually used in these tests,
it is merely used by the test fixtures to check if the model is an LLM
or Embedding.
# What does this PR do?
We have several places running tests for different purposes.
- oss llama stack
- provider tests
- e2e tests
- provider llama stack
- unit tests
- e2e tests
It would be nice if they can *share the same set of test data*, so we
maintain the consistency between spec and implementation. This is what
this diff is about, isolating test data from test coding, so that we can
reuse the same data at different places by writing different test
coding.
## Test Plan
== Set up Ollama local server
== Run a provider test
conda activate stack
OLLAMA_URL="http://localhost:8321" \
pytest -v -s -k "ollama" --inference-model="llama3.2:3b-instruct-fp16" \
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output
// test_structured_output should also work
== Run an e2e test
conda activate sherpa
with-proxy pip install llama-stack
export INFERENCE_MODEL=llama3.2:3b-instruct-fp16
export LLAMA_STACK_PORT=8322
with-proxy llama stack build --template ollama
with-proxy llama stack run --env OLLAMA_URL=http://localhost:8321 ollama
- Run test client,
LLAMA_STACK_PORT=8322 LLAMA_STACK_BASE_URL="http://localhost:8322" \
pytest -v -s --inference-model="llama3.2:3b-instruct-fp16" \
tests/client-sdk/inference/test_text_inference.py::test_text_completion_structured_output
// test_text_chat_completion_structured_output should also work
## Notes
- This PR was automatically generated by oss_sync
- Please refer to D69478008 for more details.
# What does this PR do?
- Updated `test_register_with_llama_model` to skip tests when using the
Ollama provider, as it does not support custom model names.
- Delete `test_initialize_model_during_registering` since there is no
"load_model" semantic that is exposed publicly on a provider.
These changes ensure that tests do not fail for providers with
incompatible behaviors.
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
Run Ollama:
```
uv run pytest -v -s -k "ollama" llama_stack/providers/tests/inference/test_model_registration.py
/Users/leseb/Documents/AI/llama-stack/.venv/lib/python3.13/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"
warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
========================================== test session starts ==========================================
platform darwin -- Python 3.13.1, pytest-8.3.4, pluggy-1.5.0 -- /Users/leseb/Documents/AI/llama-stack/.venv/bin/python3
cachedir: .pytest_cache
metadata: {'Python': '3.13.1', 'Platform': 'macOS-15.3-arm64-arm-64bit-Mach-O', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0', 'nbval': '0.11.0'}}
rootdir: /Users/leseb/Documents/AI/llama-stack
configfile: pyproject.toml
plugins: html-4.1.1, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0, nbval-0.11.0
asyncio: mode=Mode.STRICT, asyncio_default_fixture_loop_scope=None
collected 65 items / 60 deselected / 5 selected
llama_stack/providers/tests/inference/test_model_registration.py::TestModelRegistration::test_register_unsupported_model[-ollama] PASSED
llama_stack/providers/tests/inference/test_model_registration.py::TestModelRegistration::test_register_nonexistent_model[-ollama] PASSED
llama_stack/providers/tests/inference/test_model_registration.py::TestModelRegistration::test_register_with_llama_model[-ollama] SKIPPED
llama_stack/providers/tests/inference/test_model_registration.py::TestModelRegistration::test_register_with_invalid_llama_model[-ollama] PASSED
======================== 3 passed, 1 skipped, 60 deselected, 2 warnings in 0.22s ========================
```
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Added necessary dependencies to ensure successful execution of unit
tests. Without these, the following command would fail due to missing
imports:
```
uv run pytest -v -k "ollama" \
--inference-model=llama3.2:3b-instruct-fp16
llama_stack/providers/tests/inference/test_model_registration.py
```
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
Run:
```
ollama run llama3.2:3b-instruct-fp16 --keepalive 2m &
uv run pytest -v -k "ollama" --inference-model=llama3.2:3b-instruct-fp16 llama_stack/providers/tests/inference/test_model_registration.py
```
You can observe that some tests pass while others fail, but the test
runs successfully.
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
1. This PR adds batch inserts into sqlite-vec as requested in
https://github.com/meta-llama/llama-stack/pull/1040
- Note: the inserts uses a uuid generated from the hash of the document
id and chunk content.
2. This PR also adds unit tests for sqlite-vec. In a follow up PR, I can
add similar tests to Faiss.
## Test Plan
1. Integration tests:
```python
INFERENCE_MODEL=llama3.2:3b-instruct-fp16 LLAMA_STACK_CONFIG=ollama pytest -s -v tests/client-sdk/vector_io/test_vector_io.py
...
PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_retrieve[all-MiniLM-L6-v2-sqlite_vec] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_list PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_register[all-MiniLM-L6-v2-faiss] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_register[all-MiniLM-L6-v2-sqlite_vec] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_unregister[faiss] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_unregister[sqlite_vec] PASSED
```
3. Unit tests:
```python
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
...
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_add_chunks PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_chunk_id_conflict PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_register_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_unregister_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_generate_chunk_id PASSED
```
I also tested using the same example RAG script in
https://github.com/meta-llama/llama-stack/pull/1040 and received the
output.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
llama-models should have extremely minimal cruft. Its sole purpose
should be didactic -- show the simplest implementation of the llama
models and document the prompt formats, etc.
This PR is the complement to
https://github.com/meta-llama/llama-models/pull/279
## Test Plan
Ensure all `llama` CLI `model` sub-commands work:
```bash
llama model list
llama model download --model-id ...
llama model prompt-format -m ...
```
Ran tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/
LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/
LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/
```
Create a fresh venv `uv venv && source .venv/bin/activate` and run
`llama stack build --template fireworks --image-type venv` followed by
`llama stack run together --image-type venv` <-- the server runs
Also checked that the OpenAPI generator can run and there is no change
in the generated files as a result.
```bash
cd docs/openapi_generator
sh run_openapi_generator.sh
```
# What does this PR do?
- Remove hardcoded configurations from pre-commit.
- Allow configuration to be set via pyproject.toml.
- Merge .ruff.toml settings into pyproject.toml.
- Ensure the linter and formatter use the defined configuration instead
of being overridden by pre-commit.
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This fixes an import introduced due to merging #1079 before #1039, and
thus the changes from #1039 needing to update `QdrantConfig` to
`QdrantVectorIOConfig`.
## Test Plan
I ran the remote vllm provider inference tests against the latest main:
```
VLLM_URL="http://localhost:8001/v1" python -m pytest -s -v llama_stack/providers/tests/inference/test_text_inference.py --providers "inference=vllm_remote"
```
That failed with:
```
File "/home/bbrownin/src/llama-stack/llama_stack/providers/tests/vector_io/fixtures.py", line 20, in <module>
from llama_stack.providers.remote.vector_io.qdrant import QdrantConfig
ImportError: Error importing plugin "llama_stack.providers.tests.vector_io.fixtures": cannot import name 'QdrantConfig' from 'llama_stack.providers.remote.vector_io.qdrant' (/home/bbrownin/src/llama-stack/llama_stack/providers/remote/vector_io/qdrant/__init__.py)
```
After this change, the import no longer fails and the tests pass.
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
- Update `/eval-tasks` to `/benchmarks`
- ⚠️ Remove differentiation between `app` v.s. `benchmark` eval task
config. Now we only have `BenchmarkConfig`. The overloaded `benchmark`
is confusing and do not add any value. Backward compatibility is being
kept as the "type" is not being used anywhere.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
- This change is backward compatible
- Run notebook test with
```
pytest -v -s --nbval-lax ./docs/getting_started.ipynb
pytest -v -s --nbval-lax ./docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb
```
<img width="846" alt="image"
src="https://github.com/user-attachments/assets/d2fc06a7-593a-444f-bc1f-10ab9b0c843d"
/>
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
---------
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Signed-off-by: Sébastien Han <seb@redhat.com>
Signed-off-by: reidliu <reid201711@gmail.com>
Co-authored-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
Co-authored-by: Ben Browning <ben324@gmail.com>
Co-authored-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Reid <61492567+reidliu41@users.noreply.github.com>
Co-authored-by: reidliu <reid201711@gmail.com>
Co-authored-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
This is a follow on to #1022 . It includes the changes I needed to be
able to test the Qdrant support as requested by @terrytangyuan .
I uncovered a lot of bigger, more systemic issues with the vector DB
testing and I will open a new issue for those. For now, I am just
delivering the work I already did on that.
## Test Plan
As discussed on #1022:
```
podman pull qdrant/qdrant
mkdir qdrant-data
podman run -p 6333:6333 -v $(pwd)/qdrant-data:/qdrant/storage qdrant/qdrant
```
```
ollama pull all-minilm:l6-v2
curl http://localhost:11434/api/embeddings -d '{"model": "all-minilm", "prompt": "Hello world"}'
```
```
EMBEDDING_DIMENSION=384 QDRANT_URL=http://localhost pytest llama_stack/providers/tests/vector_io/test_vector_io.py -m "qdrant" -v -s --tb=short --embedding-model all-minilm:latest --disable-warnings
```
These show 3 tests passing and 15 deselected which is presumably working
as intended.
---------
Signed-off-by: Bill Murdock <bmurdock@redhat.com>
# What does this PR do?
This changes all VectorIO providers classes to follow the pattern
`<ProviderName>VectorIOConfig` and `<ProviderName>VectorIOAdapter`. All
API endpoints for VectorIOs are currently consistent with `/vector-io`.
Note that API endpoint for VectorDB stay unchanged as `/vector-dbs`.
## Test Plan
I don't have a way to test all providers. This is a simple renaming so
things should work as expected.
---------
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
- Configured ruff linter to automatically fix import sorting issues.
- Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are
applied.
- Enabled the 'I' selection to focus on import-related linting rules.
- Ran the linter, and formatted all codebase imports accordingly.
- Removed the black dep from the "dev" group since we use ruff
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
The remote-vllm provider was not passing logprobs options from
CompletionRequest or ChatCompletionRequests through to the OpenAI client
parameters. I manually verified this, as well as observed this provider
failing `TestInference::test_completion_logprobs`. This was filed as
issue #1073.
This fixes that by passing the `logprobs.top_k` value through to the
parameters we pass into the OpenAI client.
Additionally, this fixes a bug in `test_text_inference.py` where it
mistakenly assumed chunk.delta were of type `ContentDelta` for
completion requests. The deltas are of type `ContentDelta` for chat
completion requests, but for basic completion requests the deltas are of
type string. This test was likely failing for other providers that did
properly support logprobs because of this latter issue in the test,
which was hit while fixing the above issue with the remote-vllm
provider.
(Closes#1073)
## Test Plan
First, you need a vllm running. I ran one locally like this:
```
vllm serve meta-llama/Llama-3.2-3B-Instruct --port 8001 --enable-auto-tool-choice --tool-call-parser llama3_json
```
Next, run test_text_inference.py against this vllm using the remote vllm
provider like this:
```
VLLM_URL="http://localhost:8001/v1" python -m pytest -s -v llama_stack/providers/tests/inference/test_text_inference.py --providers "inference=vllm_remote"
```
Before my change, the test failed with this error:
```
llama_stack/providers/tests/inference/test_text_inference.py:155: in test_completion_logprobs
assert 1 <= len(response.logprobs) <= 5
E TypeError: object of type 'NoneType' has no len()
```
After my change, the test passes.
[//]: # (## Documentation)
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
This PR adds `sqlite_vec` as an additional inline vectordb.
Tested with `ollama` by adding the `vector_io` object in
`./llama_stack/templates/ollama/run.yaml` :
```yaml
vector_io:
- provider_id: sqlite_vec
provider_type: inline::sqlite_vec
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/sqlite_vec.db
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/sqlite_vec.db
```
I also updated the `./tests/client-sdk/vector_io/test_vector_io.py` test
file with:
```python
INLINE_VECTOR_DB_PROVIDERS = ["faiss", "sqlite_vec"]
```
And parameterized the relevant tests.
[//]: # (If resolving an issue, uncomment and update the line below)
# Closes
https://github.com/meta-llama/llama-stack/issues/1005
## Test Plan
I ran the tests with:
```bash
INFERENCE_MODEL=llama3.2:3b-instruct-fp16 LLAMA_STACK_CONFIG=ollama pytest -s -v tests/client-sdk/vector_io/test_vector_io.py
```
Which outputs:
```python
...
PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_retrieve[all-MiniLM-L6-v2-sqlite_vec] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_list PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_register[all-MiniLM-L6-v2-faiss] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_register[all-MiniLM-L6-v2-sqlite_vec] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_unregister[faiss] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_unregister[sqlite_vec] PASSED
```
In addition, I ran the `rag_with_vector_db.py`
[example](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/rag_with_vector_db.py)
using the script below with `uv run rag_example.py`.
<details>
<summary>CLICK TO SHOW SCRIPT 👋 </summary>
```python
#!/usr/bin/env python3
import os
import uuid
from termcolor import cprint
# Set environment variables
os.environ['INFERENCE_MODEL'] = 'llama3.2:3b-instruct-fp16'
os.environ['LLAMA_STACK_CONFIG'] = 'ollama'
# Import libraries after setting environment variables
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.types import Document
def main():
# Initialize the client
client = LlamaStackAsLibraryClient("ollama")
vector_db_id = f"test-vector-db-{uuid.uuid4().hex}"
_ = client.initialize()
model_id = 'llama3.2:3b-instruct-fp16'
# Define the list of document URLs and create Document objects
urls = [
"chat.rst",
"llama3.rst",
"memory_optimizations.rst",
"lora_finetune.rst",
]
documents = [
Document(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
metadata={},
)
for i, url in enumerate(urls)
]
# (Optional) Use the documents as needed with your client here
client.vector_dbs.register(
provider_id='sqlite_vec',
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
)
client.tool_runtime.rag_tool.insert(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=512,
)
# Create agent configuration
agent_config = AgentConfig(
model=model_id,
instructions="You are a helpful assistant",
enable_session_persistence=False,
toolgroups=[
{
"name": "builtin::rag",
"args": {
"vector_db_ids": [vector_db_id],
}
}
],
)
# Instantiate the Agent
agent = Agent(client, agent_config)
# List of user prompts
user_prompts = [
"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.",
"Was anything related to 'Llama3' discussed, if so what?",
"Tell me how to use LoRA",
"What about Quantization?",
]
# Create a session for the agent
session_id = agent.create_session("test-session")
# Process each prompt and display the output
for prompt in user_prompts:
cprint(f"User> {prompt}", "green")
response = agent.create_turn(
messages=[
{
"role": "user",
"content": prompt,
}
],
session_id=session_id,
)
# Log and print events from the response
for log in EventLogger().log(response):
log.print()
if __name__ == "__main__":
main()
```
</details>
Which outputs a large summary of RAG generation.
# Documentation
Will handle documentation updates in follow-up PR.
# (- [ ] Added a Changelog entry if the change is significant)
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
The previous image URLs were sometimes blocked by Cloudflare, causing
test failures for some users. This update replaces them with a
GitHub-hosted image (`dog.png`) from the `llama-stack` repository,
ensuring more reliable access during testing.
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
```
$ ollama run llama3.2-vision:latest --keep-alive 2m &
$ uv run pytest -v -s -k "ollama" --inference-model=llama3.2-vision:latest llama_stack/providers/tests/inference/test_vision_inference.py
/Users/leseb/Documents/AI/llama-stack/.venv/lib/python3.13/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"
warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
============================================ test session starts =============================================
platform darwin -- Python 3.13.1, pytest-8.3.4, pluggy-1.5.0 -- /Users/leseb/Documents/AI/llama-stack/.venv/bin/python3
cachedir: .pytest_cache
metadata: {'Python': '3.13.1', 'Platform': 'macOS-15.3-arm64-arm-64bit-Mach-O', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0', 'nbval': '0.11.0'}}
rootdir: /Users/leseb/Documents/AI/llama-stack
configfile: pyproject.toml
plugins: html-4.1.1, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0, nbval-0.11.0
asyncio: mode=Mode.STRICT, asyncio_default_fixture_loop_scope=None
collected 39 items / 36 deselected / 3 selected
llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_non_streaming[-ollama-image0-expected_strings0] PASSED
llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_non_streaming[-ollama-image1-expected_strings1]
PASSED
llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_streaming[-ollama] PASSED
========================== 3 passed, 36 deselected, 2 warnings in 62.23s (0:01:02) ==========================
```
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Previously, the test was failing due to a pydantic validation error
caused by passing raw binary image data instead of a valid Unicode
string. This fix encodes the image data as base64, ensuring it is a
valid string format compatible with `ImageContentItem`.
Error:
```
______________ ERROR collecting llama_stack/providers/tests/inference/test_vision_inference.py _______________
llama_stack/providers/tests/inference/test_vision_inference.py:31: in <module>
class TestVisionModelInference:
llama_stack/providers/tests/inference/test_vision_inference.py:37: in TestVisionModelInference
ImageContentItem(image=dict(data=PASTA_IMAGE)),
E pydantic_core._pydantic_core.ValidationError: 1 validation error for ImageContentItem
E image.data
E Input should be a valid string, unable to parse raw data as a unicode string [type=string_unicode, input_value=b'\xff\xd8\xff\xe0\x00\x1...0\xe6\x9f5\xb5?\xff\xd9', input_type=bytes]
E For further information visit
https://errors.pydantic.dev/2.10/v/string_unicode
```
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
Execute the following:
```
ollama run llama3.2-vision --keepalive 2m &
uv run pytest -v -s -k "ollama" --inference-model=llama3.2-vision:latest llama_stack/providers/tests/inference/test_vision_inference.py
llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_non_streaming[-ollama-image0-expected_strings0] PASSED
llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_non_streaming[-ollama-image1-expected_strings1] FAILED
llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_streaming[-ollama] FAILED
```
The last two tests are failing because Cloudflare blocked me from
accessing
https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg
but this has no impact on the current fix.
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Refactored tests by removing unused exception alias (as exc_info) in
pytest.raises, improving code clarity and reducing lint warnings.
exc_info was never used.
Signed-off-by: Sébastien Han <seb@redhat.com>
## Test Plan
Please describe:
- tests you ran to verify your changes with result summaries.
- provide instructions so it can be reproduced.
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Replaced references to `memory` with `vector_io` in
`DEFAULT_PROVIDER_COMBINATIONS` and adjusted corresponding fixture
imports to ensure proper configuration for vector I/O during tests. This
change aligns with the new testing structure.
Followup of https://github.com/meta-llama/llama-stack/pull/830 when the
memory fixture was removed.
Signed-off-by: Sébastien Han <seb@redhat.com>
## Test Plan
Please describe:
- tests you ran to verify your changes with result summaries.
- provide instructions so it can be reproduced.
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
Signed-off-by: Sébastien Han <seb@redhat.com>
datasets.rst was removed from torchtune repo.
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Replace a missing 404 document with another one that exists. (Removed it
from
the list when memory_optimizations.rst was already pulled.)
## Test Plan
Please describe:
- tests you ran to verify your changes with result summaries.
- provide instructions so it can be reproduced.
## Sources
Please link relevant resources if necessary.
## Before submitting
- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
The current default system prompt for llama3.2 tends to overindex on
tool calling and doesn't work well when the prompt does not require tool
calling.
This PR adds an option to override the default system prompt, and
organizes tool-related configs into a new config object.
- [ ] Addresses issue (#issue)
## Test Plan
python -m unittest
llama_stack.providers.tests.inference.test_prompt_adapter
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with
[ReviewStack](https://reviewstack.dev/meta-llama/llama-stack/pull/937).
* #938
* __->__ #937
Lint check in main branch is failing. This fixes the lint check after we
moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We
need to move to a `ruff.toml` file as well as fixing and ignoring some
additional checks.
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
This PR adds SambaNova as one of the Provider
- Add SambaNova as a provider
## Test Plan
Test the functional command
```
pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_embeddings.py llama_stack/providers/tests/inference/test_prompt_adapter.py llama_stack/providers/tests/inference/test_text_inference.py llama_stack/providers/tests/inference/test_vision_inference.py --env SAMBANOVA_API_KEY=<sambanova-api-key>
```
Test the distribution template:
```
# Docker
LLAMA_STACK_PORT=5001
docker run -it -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-sambanova \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
# Conda
llama stack build --template sambanova --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```
## Source
[SambaNova API Documentation](https://cloud.sambanova.ai/apis)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [Y] Ran pre-commit to handle lint / formatting issues.
- [Y] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [Y] Updated relevant documentation.
- [Y ] Wrote necessary unit or integration tests.
---------
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
Adds raw completions API to vLLM
## Test Plan
<details>
<summary>Setup</summary>
```bash
# Run vllm server
conda create -n vllm python=3.12 -y
conda activate vllm
pip install vllm
# Run llamastack
conda create --name llamastack-vllm python=3.10
conda activate llamastack-vllm
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct && \
pip install -e . && \
pip install --no-cache --index-url https://pypi.org/simple/ --extra-index-url https://test.pypi.org/simple/ llama-stack==0.1.0rc7 && \
llama stack build --template remote-vllm --image-type conda && \
llama stack run ./distributions/remote-vllm/run.yaml \
--port 5000 \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://localhost:8000/v1 | tee -a llama-stack.log
```
</details>
<details>
<summary>Integration</summary>
```bash
# Run
conda activate llamastack-vllm
export VLLM_URL=http://localhost:8000/v1
pip install pytest pytest_html pytest_asyncio aiosqlite
pytest llama_stack/providers/tests/inference/test_text_inference.py -v -k vllm
# Results
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[-vllm_remote] PASSED [ 11%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[-vllm_remote] PASSED [ 22%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_logprobs[-vllm_remote] SKIPPED [ 33%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[-vllm_remote] SKIPPED [ 44%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[-vllm_remote] PASSED [ 55%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[-vllm_remote] PASSED [ 66%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[-vllm_remote] PASSED [ 77%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[-vllm_remote] PASSED [ 88%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[-vllm_remote] PASSED [100%]
====================================== 7 passed, 2 skipped, 99 deselected, 1 warning in 9.80s ======================================
```
</details>
<details>
<summary>Manual</summary>
```bash
# Install
pip install --no-cache --index-url https://pypi.org/simple/ --extra-index-url https://test.pypi.org/simple/ llama-stack==0.1.0rc7
```
Apply this diff
```diff
diff --git a/llama_stack/distribution/server/server.py b/llama_stack/distribution/server/server.py
index 8dbb193..95173e2 100644
--- a/llama_stack/distribution/server/server.py
+++ b/llama_stack/distribution/server/server.py
@@ -250,7 +250,7 @@ class ClientVersionMiddleware:
server_version_parts = tuple(
map(int, self.server_version.split(".")[:2])
)
- if client_version_parts != server_version_parts:
+ if False and client_version_parts != server_version_parts:
async def send_version_error(send):
await send(
diff --git a/llama_stack/templates/remote-vllm/run.yaml b/llama_stack/templates/remote-vllm/run.yaml
index 4eac4da..32eb50e 100644
--- a/llama_stack/templates/remote-vllm/run.yaml
+++ b/llama_stack/templates/remote-vllm/run.yaml
@@ -94,7 +94,8 @@ metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/registry.db
models:
-- metadata: {}
+- metadata:
+ llama_model: meta-llama/Llama-3.2-3B-Instruct
model_id: ${env.INFERENCE_MODEL}
provider_id: vllm-inference
model_type: llm
```
Test 1:
```python
from llama_stack_client import LlamaStackClient
client = LlamaStackClient(
base_url="http://localhost:5000",
)
response = client.inference.completion(
model_id="meta-llama/Llama-3.2-3B-Instruct",
content="Hello, world client!",
)
print(response)
```
Test 2
```
from llama_stack_client import LlamaStackClient
client = LlamaStackClient(
base_url="http://localhost:5000",
)
response = client.inference.completion(
model_id="meta-llama/Llama-3.2-3B-Instruct",
content="Hello, world client!",
stream=True,
)
for chunk in response:
print(chunk.delta, end="", flush=True)
```
```
I'm excited to introduce you to our latest project, a comprehensive guide to the best coffee shops in [City]. As a coffee connoisseur, you're in luck because we've scoured the city to bring you the top picks for the perfect cup of joe.
In this guide, we'll take you on a journey through the city's most iconic coffee shops, highlighting their unique features, must-try drinks, and insider tips from the baristas themselves. From cozy cafes to trendy cafes, we've got you covered.
**Top 5 Coffee Shops in [City]**
1. **The Daily Grind**: This beloved institution has been serving up expertly crafted pour-overs and lattes for over 10 years. Their expert baristas are always happy to guide you through their menu, which features a rotating selection of single-origin beans from around the world...
```
</details>
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
Some small updates to the inference types to make them more standard
Specifically:
- image data is now located in a "image" subkey
- similarly tool call data is located in a "tool_call" subkey
The pattern followed is `dict(type="foo", foo=<...>)`
Making a few small naming changes as per feedback:
- RAGToolRuntime methods are called `insert` and `query` to keep them
more general
- The tool names are changed to non-namespaced forms
`insert_into_memory` and `query_from_memory`
- The REST endpoints are more REST-ful
See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.
Third part:
- we need to make `tool_runtime.rag_tool.query_context()` and
`tool_runtime.rag_tool.insert_documents()` methods work smoothly with
complete type safety. To that end, we introduce a sub-resource path
`tool-runtime/rag-tool/` and make changes to the resolver to make things
work.
- the PR updates the agents implementation to directly call these typed
APIs for memory accesses rather than going through the complex, untyped
"invoke_tool" API. the code looks much nicer and simpler (expectedly.)
- there are a number of hacks in the server resolver implementation
still, we will live with some and fix some
Note that we must make sure the client SDKs are able to handle this
subresource complexity also. Stainless has support for subresources, so
this should be possible but beware.
## Test Plan
Our RAG test is sad (doesn't actually test for actual RAG output) but I
verified that the implementation works. I will work on fixing the RAG
test afterwards.
```bash
pytest -s -v tests/agents/test_agents.py -k "rag and together" --safety-shield=meta-llama/Llama-Guard-3-8B
```
See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.
Second part:
- updates routing table / router code
- updates the faiss implementation
## Test Plan
```
pytest -s -v -k sentence test_vector_io.py --env EMBEDDING_DIMENSION=384
```
# What does this PR do?
1) enabled structured output for ollama /completion API. It seems we
missed this one.
2) fixed ollama structured output test in client sdk - ollama does not
support list format for structured output
3) enable structured output unit test as the result was stable on
Llama-3.1-8B-Instruct and ollama, fireworks, together.
## Test Plan
1) Run `test_completion_structured_output` on /completion API with 3
providers: ollama, fireworks, together.
pytest -v -s -k "together"
--inference-model="meta-llama/Llama-3.1-8B-Instruct"
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output
```
(base) sxyi@sxyi-mbp llama-stack % pytest -s -v llama_stack/providers/tests/inference --config=ci_test_config.yaml
/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/pytest_asyncio/plugin.py:208: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"
warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
================================================================================================ test session starts =================================================================================================
platform darwin -- Python 3.13.0, pytest-8.3.4, pluggy-1.5.0 -- /Library/Frameworks/Python.framework/Versions/3.13/bin/python3.13
cachedir: .pytest_cache
metadata: {'Python': '3.13.0', 'Platform': 'macOS-15.1.1-arm64-arm-64bit-Mach-O', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'asyncio': '0.24.0', 'html': '4.1.1', 'metadata': '3.1.1', 'md': '0.2.0', 'dependency': '0.6.0', 'md-report': '0.6.3', 'anyio': '4.6.2.post1'}}
rootdir: /Users/sxyi/llama-stack
configfile: pyproject.toml
plugins: asyncio-0.24.0, html-4.1.1, metadata-3.1.1, md-0.2.0, dependency-0.6.0, md-report-0.6.3, anyio-4.6.2.post1
asyncio: mode=Mode.STRICT, default_loop_scope=None
collected 85 items / 82 deselected / 3 selected
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct-ollama] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct-fireworks]
PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct-together] PASSED
==================================================================================== 3 passed, 82 deselected, 8 warnings in 5.67s ====================================================================================
```
2)
` LLAMA_STACK_CONFIG="./llama_stack/templates/ollama/run.yaml"
/opt/miniconda3/envs/stack/bin/pytest -s -v tests/client-sdk/inference`
Before:
```
________________________________________________________________________________________ test_completion_structured_output __________________________________________________________________________________________
tests/client-sdk/inference/test_inference.py:174: in test_completion_structured_output
answer = AnswerFormat.model_validate_json(response.content)
E pydantic_core._pydantic_core.ValidationError: 1 validation error for AnswerFormat
E Invalid JSON: expected value at line 1 column 2 [type=json_invalid, input_value=' The year he retired, he...5\n\nThe best answer is', input_type=str]
E For further information visit https://errors.pydantic.dev/2.10/v/json_invalid
```
After:
test consistently passes
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
MD file for the test results of provider <> inference tests
## Test Plan
1) install `pip install pytest-md-report`
2) Run inference tests with the additions to the commands
`--md-report --md-report-verbose=1 --md-report-output=tgi.md`
Test text model: meta-llama/Llama-3.1-8B-Instruct
Test vision model: meta-llama/Llama-3.2-11B-Vision-Instruct
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
---------
Co-authored-by: Xi Yan <xiyan@meta.com>
# What does this PR do?
Generate a test report in MD that contains two main infos:
1) custom report on inference provider -> API / functionalities
2) [TO BE ADDED] test log for easy debugging
## Test Plan
For local testing, run test script in command line. See a test report
being generated at tests/report.html
`pytest /Users/sxyi/llama-stack/llama_stack/providers/tests/.
--config=ci_test_config.yaml`
See
[gist](https://gist.github.com/sixianyi0721/a421fd3bc450b74354a1c2c7da483fa5)
for output MD file
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# Context
For test automation, the end goal is to run a single pytest command from
root test directory (llama_stack/providers/tests/.) such that we execute
push-blocking tests
The work plan:
1) trigger pytest from llama_stack/providers/tests/.
2) use config file to determine what tests and parametrization we want
to run
# What does this PR do?
1) consolidates the "inference-models" / "embedding-model" /
"judge-model" ... options in root conftest.py. Without this change, we
will hit into error when trying to run `pytest
/Users/sxyi/llama-stack/llama_stack/providers/tests/.` because of
duplicated `addoptions` definitions across child conftest files.
2) Add a `config` option to specify test config in YAML. (see
[`ci_test_config.yaml`](https://gist.github.com/sixianyi0721/5b37fbce4069139445c2f06f6e42f87e)
for example config file)
For provider_fixtures, we allow users to use either a default fixture
combination or define their own {api:provider} combinations.
```
memory:
....
fixtures:
provider_fixtures:
- default_fixture_param_id: ollama // use default fixture combination with param_id="ollama" in [providers/tests/memory/conftest.py](https://fburl.com/mtjzwsmk)
- inference: sentence_transformers
memory: faiss
- default_fixture_param_id: chroma
```
3) generate tests according to the config. Logic lives in two places:
a) in `{api}/conftest.py::pytest_generate_tests`, we read from config to
do parametrization.
b) after test collection, in `pytest_collection_modifyitems`, we filter
the tests to include only functions listed in config.
## Test Plan
1) `pytest /Users/sxyi/llama-stack/llama_stack/providers/tests/.
--collect-only --config=ci_test_config.yaml`
Using `--collect-only` tag to print the pytests listed in the config
file (`ci_test_config.yaml`).
output:
[gist](https://gist.github.com/sixianyi0721/05145e60d4d085c17cfb304beeb1e60e)
2) sanity check on `--inference-model` option
```
pytest -v -s -k "ollama" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
```
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
Fixes two issues on providers/test/inference
- [ ] Addresses issue (#issue)
## Test Plan
### Before
```
===================================================================================== FAILURES =====================================================================================
__________________________________ TestVisionModelInference.test_vision_chat_completion_streaming[llama_vision-fireworks][llama_vision] ___________________________________
providers/tests/inference/test_vision_inference.py:145: in test_vision_chat_completion_streaming
content = "".join(
E TypeError: sequence item 0: expected str instance, TextDelta found
------------------------------------------------------------------------------ Captured log teardown -------------------------------------------------------------------------------
ERROR asyncio:base_events.py:1858 Task was destroyed but it is pending!
task: <Task pending name='Task-5' coro=<<async_generator_athrow without __name__>()>>
============================================================================= short test summary info ==============================================================================
FAILED providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_streaming[llama_vision-fireworks] - TypeError: sequence item 0: expected str instance, TextDelta found
============================================================== 1 failed, 2 passed, 33 deselected, 7 warnings in 3.59s ==============================================================
(base) sxyi@sxyi-mbp llama_stack %
```
### After
```
(base) sxyi@sxyi-mbp llama_stack % pytest -k "fireworks" /Users/sxyi/llama-stack/llama_stack/providers/tests/inference/test_vision_inference.py
/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/pytest_asyncio/plugin.py:208: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"
warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
=============================================================================== test session starts ================================================================================
platform darwin -- Python 3.13.0, pytest-8.3.3, pluggy-1.5.0
rootdir: /Users/sxyi/llama-stack
configfile: pyproject.toml
plugins: asyncio-0.24.0, html-4.1.1, metadata-3.1.1, dependency-0.6.0, anyio-4.6.2.post1
asyncio: mode=Mode.STRICT, default_loop_scope=None
collected 36 items / 33 deselected / 3 selected
providers/tests/inference/test_vision_inference.py ... [100%]
=================================================================== 3 passed, 33 deselected, 7 warnings in 3.75s ===================================================================
(base) sxyi@sxyi-mbp llama_stack %
```
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
- fix eval tests to include tool_runtime fixtures
- rebase eval for extracting memory retrieval context
## Test Plan
```
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py
pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
```
- With notebook:
https://gist.github.com/yanxi0830/1260a6cb7ec42498a195b88422462a34
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
Cleans up how we provide sampling params. Earlier, strategy was an enum
and all params (top_p, temperature, top_k) across all strategies were
grouped. We now have a strategy union object with each strategy (greedy,
top_p, top_k) having its corresponding params.
Earlier,
```
class SamplingParams:
strategy: enum ()
top_p, temperature, top_k and other params
```
However, the `strategy` field was not being used in any providers making
it confusing to know the exact sampling behavior purely based on the
params since you could pass temperature, top_p, top_k and how the
provider would interpret those would not be clear.
Hence we introduced -- a union where the strategy and relevant params
are all clubbed together to avoid this confusion.
Have updated all providers, tests, notebooks, readme and otehr places
where sampling params was being used to use the new format.
## Test Plan
`pytest llama_stack/providers/tests/inference/groq/test_groq_utils.py`
// inference on ollama, fireworks and together
`with-proxy pytest -v -s -k "ollama"
--inference-model="meta-llama/Llama-3.1-8B-Instruct"
llama_stack/providers/tests/inference/test_text_inference.py `
// agents on fireworks
`pytest -v -s -k 'fireworks and create_agent'
--inference-model="meta-llama/Llama-3.1-8B-Instruct"
llama_stack/providers/tests/agents/test_agents.py
--safety-shield="meta-llama/Llama-Guard-3-8B"`
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [X] Ran pre-commit to handle lint / formatting issues.
- [X] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [X] Updated relevant documentation.
- [X] Wrote necessary unit or integration tests.
---------
Co-authored-by: Hardik Shah <hjshah@fb.com>