Commit graph

528 commits

Author SHA1 Message Date
raghotham
ed58a94b30
docs: fixes to quick start (#1943)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

---------

Co-authored-by: Francisco Arceo <farceo@redhat.com>
2025-04-11 13:41:23 -07:00
Ben Browning
2b2db5fbda
feat: OpenAI-Compatible models, completions, chat/completions (#1894)
# What does this PR do?

This stubs in some OpenAI server-side compatibility with three new
endpoints:

/v1/openai/v1/models
/v1/openai/v1/completions
/v1/openai/v1/chat/completions

This gives common inference apps using OpenAI clients the ability to
talk to Llama Stack using an endpoint like
http://localhost:8321/v1/openai/v1 .

The two "v1" instances in there isn't awesome, but the thinking is that
Llama Stack's API is v1 and then our OpenAI compatibility layer is
compatible with OpenAI V1. And, some OpenAI clients implicitly assume
the URL ends with "v1", so this gives maximum compatibility.

The openai models endpoint is implemented in the routing layer, and just
returns all the models Llama Stack knows about.

The following providers should be working with the new OpenAI
completions and chat/completions API:
* remote::anthropic (untested)
* remote::cerebras-openai-compat (untested)
* remote::fireworks (tested)
* remote::fireworks-openai-compat (untested)
* remote::gemini (untested)
* remote::groq-openai-compat (untested)
* remote::nvidia (tested)
* remote::ollama (tested)
* remote::openai (untested)
* remote::passthrough (untested)
* remote::sambanova-openai-compat (untested)
* remote::together (tested)
* remote::together-openai-compat (untested)
* remote::vllm (tested)

The goal to support this for every inference provider - proxying
directly to the provider's OpenAI endpoint for OpenAI-compatible
providers. For providers that don't have an OpenAI-compatible API, we'll
add a mixin to translate incoming OpenAI requests to Llama Stack
inference requests and translate the Llama Stack inference responses to
OpenAI responses.

This is related to #1817 but is a bit larger in scope than just chat
completions, as I have real use-cases that need the older completions
API as well.

## Test Plan

### vLLM

```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run

LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```

### ollama
```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run

LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```



## Documentation

Run a Llama Stack distribution that uses one of the providers mentioned
in the list above. Then, use your favorite OpenAI client to send
completion or chat completion requests with the base_url set to
http://localhost:8321/v1/openai/v1 . Replace "localhost:8321" with the
host and port of your Llama Stack server, if different.

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-04-11 13:14:17 -07:00
Francisco Arceo
24d70cedca
docs: Updated docs to show minimal RAG example and some other minor changes (#1935)
# What does this PR do?
Incorporating some feedback into the docs.

- **`docs/source/getting_started/index.md`:**
    - Demo actually does RAG now
    - Simplified the installation command for dependencies.
    - Updated demo script examples to align with the latest API changes.
- Replaced manual document manipulation with `RAGDocument` for clarity
and maintainability.
- Introduced new logic for model and embedding selection using the Llama
Stack Client SDK.
- Enhanced examples to showcase proper agent initialization and logging.
- **`docs/source/getting_started/detailed_tutorial.md`:**
- Updated the section for listing models to include proper code
formatting with `bash`.
    - Removed and reorganized the "Run the Demos" section for clarity.
- Adjusted tab-item structures and added new instructions for demo
scripts.
- **`docs/_static/css/my_theme.css`:**
- Updated heading styles to include `h2`, `h3`, and `h4` for consistent
font weight.
- Added a new style for `pre` tags to wrap text and break long words,
this is particularly useful for rendering long output from generation.

    
## Test Plan
Tested locally. Screenshot for reference:

<img width="1250" alt="Screenshot 2025-04-10 at 10 12 12 PM"
src="https://github.com/user-attachments/assets/ce1c8986-e072-4c6f-a697-ed0d8fb75b34"
/>

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-04-11 11:50:36 -07:00
Mark Campbell
6aa459b00c
docs: fix errors in kubernetes deployment guide (#1914)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]
Fixes a couple of errors in PVC/Secret setup and adds context for
expected Hugging Face token
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)
2025-04-11 13:04:13 +02:00
Francisco Arceo
49955a06b1
docs: Update quickstart page to structure things a little more for the novices (#1873)
# What does this PR do?
Another doc enhancement for
https://github.com/meta-llama/llama-stack/issues/1818

Summary of changes:
- `docs/source/distributions/configuration.md`
   - Updated dropdown title to include a more user-friendly description.

- `docs/_static/css/my_theme.css`
   - Added styling for `<h3>` elements to set a normal font weight.

- `docs/source/distributions/starting_llama_stack_server.md`
- Changed section headers from bold text to proper markdown headers
(e.g., `##`).
- Improved descriptions for starting Llama Stack server using different
methods (library, container, conda, Kubernetes).
- Enhanced clarity and structure by converting instructions into
markdown headers and improved formatting.

- `docs/source/getting_started/index.md`
   - Major restructuring of the "Quick Start" guide:
- Added new introductory section for Llama Stack and its capabilities.
- Reorganized steps into clearer subsections with proper markdown
headers.
- Replaced dropdowns with tabbed content for OS-specific instructions.
- Added detailed steps for setting up and running the Llama Stack server
and client.
- Introduced new sections for running basic inference and building
agents.
- Enhanced readability and visual structure with emojis, admonitions,
and examples.

- `docs/source/providers/index.md`
   - Updated the list of LLM inference providers to include "Ollama."
   - Expanded the list of vector databases to include "SQLite-Vec."

Let me know if you need further details!

## Test Plan
Renders locally, included screenshot.

# Documentation

For https://github.com/meta-llama/llama-stack/issues/1818

<img width="1332" alt="Screenshot 2025-04-09 at 11 07 12 AM"
src="https://github.com/user-attachments/assets/c106efb9-076c-4059-a4e0-a30fa738585b"
/>

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-04-10 14:09:00 -07:00
Francisco Arceo
09a83b1ec1
docs: Updating background color for code in darkmode (#1930)
# What does this PR do?
A small quality of life adjustment to make the code background for
darkmode black. Makes it much easier to differentiate between code and
non-code text.

From:
<img width="1250" alt="Screenshot 2025-04-10 at 9 22 23 AM"
src="https://github.com/user-attachments/assets/3a3aea8b-e540-4e76-a7db-6c276e389cc2"
/>
To:
<img width="1273" alt="Screenshot 2025-04-10 at 9 22 43 AM"
src="https://github.com/user-attachments/assets/6ada2cb1-2c33-4a95-be88-7b4c65d4ba93"
/>

The CSS was sourced from here:
https://github.com/MrDogeBro/sphinx_rtd_dark_mode/blob/main/sphinx_rtd_dark_mode/static/dark_mode_css/dark.css

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-04-10 09:38:57 -07:00
Sébastien Han
1f2df59ece
docs: fix model name (#1926)
# What does this PR do?

Use llama3.2:3b for consistency.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-10 09:37:48 -07:00
Yuan Tang
1be66d754e
docs: Redirect instructions for additional hardware accelerators for remote vLLM provider (#1923)
# What does this PR do?

vLLM website just added a [new index page for installing for different
hardware
accelerators](https://docs.vllm.ai/en/latest/getting_started/installation.html).
This PR adds a link to that page with additional edits to make sure
readers are aware that the use of GPUs on this page are for
demonstration purposes only.

This closes https://github.com/meta-llama/llama-stack/issues/1813.

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-04-10 10:04:17 +02:00
Yuan Tang
712c6758c6
docs: Avoid bash script syntax highlighting for dark mode (#1918)
See
https://github.com/meta-llama/llama-stack/pull/1913#issuecomment-2790153778

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-04-09 15:43:43 -07:00
Sébastien Han
770b38f8b5
chore: simplify running the demo UI (#1907)
# What does this PR do?

* Manage UI deps in pyproject
* Use a new "ui" dep group to pull the deps with "uv"
* Simplify the run command
* Bump versions in requirements.txt

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-09 11:22:29 -07:00
Francisco Arceo
b93318e40b
chore: Detect browser setting for dark/light mode and set default to light mode (#1913)
# What does this PR do?

1. Adding some lightweight JS to detect the default browser setting for
dark/light mode
3. Setting default screen setting to light mode as to not change default
behavior.

From the docs: https://github.com/MrDogeBro/sphinx_rtd_dark_mode

>This lets you choose which theme the user sees when they load the docs
for the first time ever. After the first time however, this setting has
no effect as the users preference is stored in local storage within
their browser. This option accepts a boolean for the value. If this
option is true (the default option), users will start in dark mode when
first visiting the site. If this option is false, users will start in
light mode when they first visit the site.

# Closes #1915 

## Test Plan
Tested locally on my Mac on Safari and Chrome.

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-04-09 12:40:56 -04:00
Matthew Farrellee
a2cf299906
fix: update getting started guide to use ollama pull (#1855)
# What does this PR do?

download the getting started w/ ollama model instead of downloading and
running it.

directly running it was necessary before
https://github.com/meta-llama/llama-stack/pull/1854

## Test Plan

run the code on the page
2025-04-09 10:35:19 +02:00
Sébastien Han
389767010b
feat: ability to execute external providers (#1672)
# What does this PR do?

Providers that live outside of the llama-stack codebase are now
supported.
A new property `external_providers_dir` has been added to the main
config and can be configured as follow:

```
external_providers_dir: /etc/llama-stack/providers.d/
```

Where the expected structure is:

```
providers.d/
  inference/
    custom_ollama.yaml
    vllm.yaml
  vector_io/
    qdrant.yaml
```

Where `custom_ollama.yaml` is:

```
adapter:
  adapter_type: custom_ollama
  pip_packages: ["ollama", "aiohttp"]
  config_class: llama_stack_ollama_provider.config.OllamaImplConfig
  module: llama_stack_ollama_provider
api_dependencies: []
optional_api_dependencies: []
```

Obviously the package must be installed on the system, here is the
`llama_stack_ollama_provider` example:

```
$ uv pip show llama-stack-ollama-provider
Using Python 3.10.16 environment at: /Users/leseb/Documents/AI/llama-stack/.venv
Name: llama-stack-ollama-provider
Version: 0.1.0
Location: /Users/leseb/Documents/AI/llama-stack/.venv/lib/python3.10/site-packages
Editable project location: /private/var/folders/mq/rnm5w_7s2d3fxmtkx02knvhm0000gn/T/tmp.ZBHU5Ezxg4/ollama/llama-stack-ollama-provider
Requires:
Required-by:
```

Closes: https://github.com/meta-llama/llama-stack/issues/658

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-09 10:30:41 +02:00
AlexHe99
983f6feeb8
docs: Update remote-vllm.md with AMD GPU vLLM server supported. (#1858)
Add the content to use AMD GPU as the vLLM server. Split the original
part to two sub chapters,
1. AMD vLLM server
2. NVIDIA vLLM server (orignal)

# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

---------

Signed-off-by: Alex He <alehe@amd.com>
2025-04-08 21:35:32 -07:00
ehhuang
7b4eb0967e
test: verification on provider's OAI endpoints (#1893)
# What does this PR do?


## Test Plan
export MODEL=accounts/fireworks/models/llama4-scout-instruct-basic;
LLAMA_STACK_CONFIG=verification pytest -s -v tests/integration/inference
--vision-model $MODEL --text-model $MODEL
2025-04-07 23:06:28 -07:00
Matthew Farrellee
c52ccc4bbd
docs: update importing_as_library.md (#1863)
LlamaStackAsLibraryClient.initialize is not async, cannot be await'd
2025-04-07 12:31:04 +02:00
ehhuang
378f0de439
docs: llama4 getting started nb (#1878)
# What does this PR do?


## Test Plan
2025-04-06 18:51:34 -07:00
raghotham
fd7ab37c14
docs: fixing sphinx imports (#1884)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)
2025-04-05 14:21:45 -07:00
Ashwin Bharambe
b8f1561956
feat: introduce llama4 support (#1877)
As title says. Details in README, elsewhere.
2025-04-05 11:53:35 -07:00
Francisco Arceo
23a99a4b22
docs: Minor updates to docs to make them a little friendlier to new users (#1871)
# What does this PR do?
This PR modifies some of the docs to help them map to (1) the mental
model of software engineers building AI models starting with RAG and
then moving to Agents and (2) aligning the navbar somewhat closer to the
diagram on the home page.

## Test Plan
N/A Tested locally.

# Documentation
Take a look at the screen shot for below and after.
## Before 
![Screenshot 2025-04-03 at 10 39
32 PM](https://github.com/user-attachments/assets/c4dc9998-3e46-43b0-8425-892c94ec3a6a)

## After
![Screenshot 2025-04-03 at 10 38
37 PM](https://github.com/user-attachments/assets/05670fcd-e56b-42dd-8af2-07b81f941d40)

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-04-04 08:10:35 -04:00
Francisco Arceo
19f504e9e2
docs: Updating docs to source from CONTRIBUTING.md (#1850)
# What does this PR do?
Another for https://github.com/meta-llama/llama-stack/issues/1815

This links the `CONTRIBUTING.md` file directly so that we don't have to
maintain two different files.

Also I updated the title for RAG under Building AI Applications.

## Changes 
Look of what the Contributing page looks like, proof it sources directly
from the markdown file.

![Screenshot 2025-04-01 at 12 43
51 AM](https://github.com/user-attachments/assets/f7021d29-eec3-44ad-a5b3-55c4480ea9ac)

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-04-01 14:50:04 +02:00
Ihar Hrachyshka
0a895c70d1
fix(api): don't return list for runtime tools (#1686)
# What does this PR do?

Don't return list for runtime tools. Instead return Response object for
pagination and consistency with other APIs.

---------

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-04-01 09:53:11 +02:00
Sébastien Han
2ffa2b77ed
refactor: extract pagination logic into shared helper function (#1770)
# What does this PR do?

Move pagination logic from LocalFS and HuggingFace implementations into
a common helper function to ensure consistent pagination behavior across
providers. This reduces code duplication and centralizes pagination
logic in one place.


## Test Plan

Run this script:

```
from llama_stack_client import LlamaStackClient

# Initialize the client
client = LlamaStackClient(base_url="http://localhost:8321")

# Register a dataset
response = client.datasets.register(
    purpose="eval/messages-answer",  # or "eval/question-answer" or "post-training/messages"
    source={"type": "uri", "uri": "huggingface://datasets/llamastack/simpleqa?split=train"},
    dataset_id="my_dataset",  # optional, will be auto-generated if not provided
    metadata={"description": "My evaluation dataset"},  # optional
)

# Verify the dataset was registered by listing all datasets
datasets = client.datasets.list()
print(f"Registered datasets: {[d.identifier for d in datasets]}")

# You can then access the data using the datasetio API
# rows = client.datasets.iterrows(dataset_id="my_dataset", start_index=1, limit=2)
rows = client.datasets.iterrows(dataset_id="my_dataset")
print(f"Data: {rows.data}")
```

And play with `start_index` and `limit`.

[//]: # (## Documentation)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-03-31 13:08:29 -07:00
Francisco Arceo
d495922949
docs: Updated documentation and Sphinx configuration (#1845)
# What does this PR do?

The goal of this PR is to make the pages easier to navigate by surfacing
the child pages on the navbar, updating some of the copy, moving some of
the files around.

Some changes:
1. Clarifying Titles
2. Restructuring "Distributions" more formally in its own page to be
consistent with Providers and adding some clarity to the child pages to
surface them and make them easier to navigate
3. Updated sphinx config to not collapse navigation by default
4. Updated copyright year to be calculated dynamically 
5. Moved `docs/source/distributions/index.md` ->
`docs/source/distributions/starting_llama_stack_server.md`

Another for https://github.com/meta-llama/llama-stack/issues/1815

## Test Plan
Tested locally and pages build (screen shots for example).

## Documentation
###  Before:
![Screenshot 2025-03-31 at 1 09
21 PM](https://github.com/user-attachments/assets/98e34f76-f0d9-4055-8e2c-441b1e7d8f6a)

### After:
![Screenshot 2025-03-31 at 1 08
52 PM](https://github.com/user-attachments/assets/dfb6b8ad-3a1d-46b6-8f54-0c553664093f)

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-03-31 13:08:05 -07:00
Francisco Arceo
9b478f3756
docs: Adding darkmode to documentation (#1843)
# What does this PR do?
docs: Adding darkmode to documentation


## Test Plan
Tested locally. 

Here's the look:
![Screenshot 2025-03-31 at 9 43
05 AM](https://github.com/user-attachments/assets/5989dbc8-ba03-4710-ad8d-6d4b9ac79786)


## Issues

Related to https://github.com/meta-llama/llama-stack/issues/1815 

Closes https://github.com/meta-llama/llama-stack/issues/1844

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-03-31 08:31:53 -07:00
Anamika
d8a8a734b5
fix: update sink name for traces and metrics in LlamaStack 0.1.8 (#1836)
# What does this PR do?
This PR updates the sink name configuration for traces and metrics in
LlamaStack to align with the latest changes introduced in version 0.1.8.
Previously, when using the `otel` sink along with other sinks (like
`console` and `sqlite`), the system threw a **ValueError**, with the
message:

```shell
Value error, 'otel' is not a valid TelemetrySink [type=value_error, input_value='console,otel,sqlite', input_type=str]
For further information visit https://errors.pydantic.dev/2.10/v/value_error
``` 

## Test Plan
- **Test 1:**  
Ran the LlamaStack server with a configuration containing
`console,otel,sqlite` as sinks.
   - **Expected result:** No errors related to invalid sink names.
   - **Result:** The system ran without throwing a `ValueError`.

- **Test 2:**  
Verified that the `otel_trace`, `otel_metric` sink now works in
combination with other sinks (`console`, `sqlite`).
- **Expected result:** Telemetry data is correctly sent to all specified
sinks without errors.
- **Result:** All telemetry data was successfully sent to the specified
sinks.
2025-03-29 10:09:08 -07:00
Francisco Arceo
37b6da37ba
docs: Document sqlite-vec faiss comparison (#1821)
# What does this PR do?
This PR documents and benchmarks the performance tradeoffs between
sqlite-vec and FAISS inline VectorDB providers.

# Closes https://github.com/meta-llama/llama-stack/issues/1165

## Test Plan

The test was run using this script:

<details>
<summary>CLICK TO SHOW SCRIPT 👋  </summary>

```python

import cProfile
import os
import uuid
import time
import random
import string
import matplotlib.pyplot as plt
import pandas as pd
from termcolor import cprint
from llama_stack_client.types import Document
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from memory_profiler import profile
from line_profiler import LineProfiler

os.environ["INFERENCE_MODEL"] = "llama3.2:3b-instruct-fp16"
os.environ["LLAMA_STACK_CONFIG"] = "ollama"

def generate_random_chars(count=400):
    return ''.join(random.choices(string.ascii_letters, k=count))

def generate_documents(num_docs: int, num_chars: int):
    documents = [
        Document(
            document_id=f"doc-{i}",
            content=f"Document content for document {i} - {generate_random_chars(count=num_chars)}",
            mime_type="text/plain",
            metadata={},
        )
        for i in range(num_docs)
    ]
    return documents


@profile
def benchmark_write(client, vector_db_id, documents, batch_size=100):
    write_times = []
    for i in range(0, len(documents), batch_size):
        batch = documents[i:i + batch_size]
        start_time = time.time()
        client.tool_runtime.rag_tool.insert(
            documents=batch,
            vector_db_id=vector_db_id,
            chunk_size_in_tokens=512,
        )
        end_time = time.time()
        write_times.append(end_time - start_time)

    return write_times

@profile
def benchmark_read(client, provider_id, vector_db_id, user_prompts):
    response_times = []
    for prompt in user_prompts:
        start_time = time.time()
        response = client.vector_io.query(
            vector_db_id=vector_db_id,
            query=prompt,
        )
        end_time = time.time()
        response_times.append(end_time - start_time)
    return response_times

def profile_functions():
    profiler = LineProfiler()
    profiler.add_function(benchmark_write)
    profiler.add_function(benchmark_read)
    return profiler


def plot_results(output, batch_size):
    # Create a DataFrame for easy manipulation
    df_sqlite = pd.DataFrame(output['sqlite-vec'])
    df_faiss = pd.DataFrame(output['faiss'])

    df_sqlite['write_times'] *= 1000
    df_faiss['write_times'] *= 1000

    avg_write_sqlite = df_sqlite['write_times'].mean()
    avg_write_faiss = df_faiss['write_times'].mean()
    avg_read_sqlite = df_sqlite['read_times'].mean()
    avg_read_faiss = df_faiss['read_times'].mean()

    plt.figure(figsize=(12, 6))
    plt.hist(df_sqlite['write_times'], bins=10, alpha=0.5, color='blue', label='sqlite-vec Write Times')
    plt.hist(df_faiss['write_times'], bins=10, alpha=0.5, color='red', label='faiss Write Times')
    plt.axvline(avg_write_sqlite, color='blue', linestyle='--',
                label=f'Average Write Time (sqlite-vec): {avg_write_sqlite:.3f} ms')
    plt.axvline(avg_write_faiss, color='red', linestyle='--',
                label=f'Average Write Time (faiss): {avg_write_faiss:.3f} ms')
    plt.title(f'Histogram of Write Times for sqlite-vec and faiss\nn = {df_faiss.shape[0]} with batch size = {batch_size}')
    plt.xlabel('Time (milliseconds)')
    plt.ylabel('Density')
    plt.legend()
    plt.savefig('write_time_comparison.png')
    plt.close()

    plt.figure(figsize=(12, 6))
    plt.hist(df_sqlite['read_times'], bins=10, alpha=0.5, color='blue', label='sqlite-vec Read Times')
    plt.hist(df_faiss['read_times'], bins=10, alpha=0.5, color='red', label='faiss Read Times')
    plt.axvline(avg_read_sqlite, color='blue', linestyle='--',
                label=f'Average Read Time (sqlite-vec): {avg_read_sqlite:.3f} ms')
    plt.axvline(avg_read_faiss, color='red', linestyle='--',
                label=f'Average Read Time (faiss): {avg_read_faiss:.3f} ms')
    plt.title(f'Histogram of Read Times for sqlite-vec and faiss\nn = {df_faiss.shape[0]}')
    plt.xlabel('Time (milliseconds)')
    plt.ylabel('Density')
    plt.legend()
    plt.savefig('read_time_comparison.png')
    plt.close()

    plt.figure(figsize=(12, 6))
    plt.hist(df_sqlite['read_times'], bins=10, alpha=0.5, color='blue', label='sqlite-vec Read Times')
    plt.hist(df_faiss['read_times'], bins=10, alpha=0.5, color='red', label='faiss Read Times')
    plt.axvline(avg_read_sqlite, color='blue', linestyle='--',
                label=f'Average Read Time (sqlite-vec): {avg_read_sqlite:.3f} ms')
    plt.axvline(avg_read_faiss, color='red', linestyle='--',
                label=f'Average Read Time (faiss): {avg_read_faiss:.3f} ms')
    plt.title(f'Histogram of Read Times for sqlite-vec and faiss\nn = {df_faiss.shape[0]}')
    plt.xlabel('Time (milliseconds)')
    plt.ylabel('Density')
    plt.legend()
    plt.savefig('read_time_comparison.png')
    plt.close()

    plt.figure(figsize=(12, 6))
    plt.plot(df_sqlite.index, df_sqlite['write_times'],
             marker='o', markersize=4, linestyle='-', color='blue',
             label='sqlite-vec Write Times')
    plt.plot(df_faiss.index, df_faiss['write_times'],
             marker='x', markersize=4, linestyle='-', color='red',
             label='faiss Write Times')

    plt.title(f'Write Times by Operation Sequence\n(batch size = {batch_size})')
    plt.xlabel('Write Operation Sequence')
    plt.ylabel('Time (milliseconds)')
    plt.legend()
    plt.grid(True, linestyle='--', alpha=0.7)
    plt.tight_layout()
    plt.savefig('write_time_sequence.png')
    plt.close()
    # Print out the summary table
    print("\nPerformance Summary for sqlite-vec:")
    print(df_sqlite)

    # Print out the summary table
    print("\nPerformance Summary for faiss:")
    print(df_faiss)


def main():
    # Initialize the client
    client = LlamaStackAsLibraryClient("ollama")
    vector_db_id = f"test-vector-db-{uuid.uuid4().hex}"
    _ = client.initialize()

    # Generate a large dataset
    num_chars = 50
    num_docs = 100
    num_writes = 100
    write_batch_size = 100
    num_reads = 100

    documents = generate_documents(num_docs * write_batch_size, num_chars)
    user_prompts = [
        f"Tell me about document {i}" for i in range(1, num_reads + 1)
    ]

    providers = ["sqlite-vec", "faiss"]
    output = {
        provider_id: {"write_times": None, "read_times": None} for provider_id in providers
    }

    # Benchmark writes and reads for SQLite and Faiss
    for provider_id in providers:
        cprint(f"Benchmarking provider: {provider_id}", "yellow")
        client.vector_dbs.register(
            provider_id=provider_id,
            vector_db_id=vector_db_id,
            embedding_model="all-MiniLM-L6-v2",
            embedding_dimension=384,
        )
        write_times = benchmark_write(client, vector_db_id, documents, write_batch_size)

        average_write_time_ms = sum(write_times) / len(write_times) * 1000.
        cprint(f"Average write time for {provider_id} is {average_write_time_ms:.2f} milliseconds for {num_writes} runs", "blue")

        cprint(f"Benchmarking reads for provider: {provider_id}", "yellow")
        read_times = benchmark_read(client, provider_id, vector_db_id, user_prompts)

        average_read_time_ms = sum(read_times) / len(read_times) * 1000.
        cprint(f"Average read time for {provider_id} is {average_read_time_ms:.2f} milliseconds for {num_reads} runs", "blue")

        client.vector_dbs.unregister(vector_db_id=vector_db_id)
        output[provider_id]['write_times'] = write_times
        output[provider_id]['read_times'] = read_times
    # Generate plots and summary
    plot_results(output, write_batch_size)


if __name__ == "__main__":
    cProfile.run('main()', 'profile_output.prof')
```
</details>

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-03-28 17:41:33 +01:00
Ihar Hrachyshka
18bac27d4e
fix: Use CONDA_DEFAULT_ENV presence as a flag to use conda mode (#1555)
# What does this PR do?

This is the second attempt to switch to system packages by default. Now
with a hack to detect conda environment - in which case conda image-type
is used.

Note: Conda will only be used when --image-name is unset *and*
CONDA_DEFAULT_ENV is set. This means that users without conda will
correctly fall back to using system packages when no --image-* arguments
are passed at all.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

Uses virtualenv:

```
$ llama stack build --template ollama --image-type venv
$ llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Using virtual environment: /home/ec2-user/src/llama-stack/schedule/.local
[...]
```

Uses system packages (virtualenv already initialized):

```
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
INFO     2025-03-27 20:46:22,882 llama_stack.cli.stack.run:142 server: No image type or image name provided. Assuming environment packages.
[...]
```

Attempt to run from environment packages without necessary packages
installed:
```
$ python -m venv barebones
$ . ./barebones/bin/activate
$ pip install -e . # to install llama command
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
ModuleNotFoundError: No module named 'fastapi'
```

^ failed as expected because the environment doesn't have necessary
packages installed.

Now install some packages in the new environment:

```
$ pip install fastapi opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp aiosqlite ollama openai datasets faiss-cpu mcp autoevals
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
```

Now see if setting CONDA_DEFAULT_ENV will change what happens by
default:

```
$ export CONDA_DEFAULT_ENV=base
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Using conda environment: base
Conda environment base does not exist.
[...]
```

---------

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-03-27 17:13:22 -04:00
Xi Yan
b5c27f77ad
chore: clean up distro doc (#1804)
# What does this PR do?
- hide distro doc (docker needs to be thoroughly tested). 

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
- docs

[//]: # (## Documentation)
2025-03-27 12:12:14 -07:00
Ihar Hrachyshka
81393afb35
chore: require data field for all List*Response models (#1799)
# What does this PR do?

No violators are currently in-tree. This is just hardening the api specs
for future consistency.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-03-27 18:15:16 +01:00
Dmitry Rogozhkin
935e706b15
docs: fix remote-vllm instructions (#1805)
# What does this PR do?

* Fix location of `run.yaml` relative to the cloned llama stack
repository
* Drop `-it` from `docker run` commands as its not needed running
services

## Test Plan

* Verified running the llama stack following updated instruction

CC: @ashwinb

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2025-03-27 10:19:51 -04:00
Hardik Shah
f8445b0d69
fix: update mcp commands in getting_started.ipynb (#1800)
as titled
2025-03-26 14:47:32 -07:00
Hardik Shah
e8d5959048
fix: update getting_started.ipynb (#1797)
using simple `pip install llama-stack-client`
2025-03-26 12:54:21 -07:00
Hardik Shah
cb2a9784ab
fix: multiple issues with getting_started notebook (#1795)
Fixes multiple issues 

1. llama stack build of dependencies was breaking with incompatible
numpy / pandas when importing datasets

Moved the notebook to start a local server instead of using library as a
client. This way the setup is cleaner since its all contained and by
using `uv run --with` we can test both the server setup process too in
CI and release time.

2. The change to [1] surfaced some other issues 
- running `llama stack run` was defaulting to conda env name 
- provider data was not being managed properly 
- Some notebook cells (telemetry for evals) were not updated with latest
changes

Fixed all the issues and update the notebook. 

### Test 

1. Manually run it all in local env 
2. `pytest -v -s --nbval-lax docs/getting_started.ipynb`
2025-03-26 10:59:12 -07:00
Ihar Hrachyshka
367c08f01e
feat(api): don't return a payload on file delete (#1640)
# What does this PR do?

This is to stay consistent with other APIs.

This change registers files in API, even though there are still no
providers. Removing tests that require a provider existing for a merged
API to enable it in API layer.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-03-25 17:12:36 -07:00
Xi Yan
65d5d0d1bf
fix: fix imports for mcp registration in notebook (#1787)
# What does this PR do?
- as title

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
notebook

[//]: # (## Documentation)
2025-03-25 16:06:03 -07:00
Rashmi Pawar
1a73f8305b
feat: Add nemo customizer (#1448)
# What does this PR do?

This PR adds support for NVIDIA's NeMo Customizer API to the Llama Stack
post-training module. The integration enables users to fine-tune models
using NVIDIA's cloud-based customization service through a consistent
Llama Stack interface.


[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Yet to be done

Things pending under this PR:

- [x] Integration of fine-tuned model(new checkpoint) for inference with
nvidia llm distribution
- [x] distribution integration of API
- [x] Add test cases for customizer(In Progress)
- [x] Documentation

```

LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/post_training/test_supervised_fine_tuning.py 

============================================================================================================================================================================ test session starts =============================================================================================================================================================================
platform linux -- Python 3.10.0, pytest-8.3.4, pluggy-1.5.0 -- /home/ubuntu/llama-stack/.venv/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.0', 'Platform': 'Linux-6.8.0-1021-gcp-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'nbval': '0.11.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'html': '4.1.1', 'asyncio': '0.25.3'}}
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: nbval-0.11.0, metadata-3.1.1, anyio-4.8.0, html-4.1.1, asyncio-0.25.3
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 2 items                                                                                                                                                                                                                                                                                                                                                            

tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_post_training_provider_registration[txt=8B] PASSED                                                                                                                                                                                                                                                 [ 50%]
tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_list_training_jobs[txt=8B] PASSED                                                                                                                                                                                                                                                                  [100%]

======================================================================================================================================================================== 2 passed, 1 warning in 0.10s ========================================================================================================================================================================
```
cc: @mattf @dglogo @sumitb

---------

Co-authored-by: Ubuntu <ubuntu@llama-stack-customizer-dev-inst-2tx95fyisatvlic4we8hidx5tfj.us-central1-a.c.brevdevprod.internal>
2025-03-25 11:01:10 -07:00
Daniele Martinoli
ba14552a32
fix: Misleading code in Llama Stack Benchmark Evals notebook (#1774)
# What does this PR do?
Closes #1773

Signed-off-by: Daniele Martinoli <dmartino@redhat.com>
2025-03-25 07:04:47 -07:00
Yuan Tang
441016bee8
feat: Support "stop" parameter in remote:vLLM (#1715)
# What does this PR do?

This adds support for "stop" parameter:
https://platform.openai.com/docs/api-reference/completions/create#completions-create-stop

## Test Plan

```
tests/integration/inference/test_text_inference.py::test_text_completion_non_streaming[txt=8B-inference:completion:sanity] PASSED                                  [  5%]
tests/integration/inference/test_text_inference.py::test_text_completion_streaming[txt=8B-inference:completion:sanity] PASSED                                      [ 11%]
tests/integration/inference/test_text_inference.py::test_text_completion_stop_sequence[txt=8B-inference:completion:stop_sequence] PASSED                           [ 16%]
tests/integration/inference/test_text_inference.py::test_text_completion_log_probs_non_streaming[txt=8B-inference:completion:log_probs] PASSED                     [ 22%]
tests/integration/inference/test_text_inference.py::test_text_completion_log_probs_streaming[txt=8B-inference:completion:log_probs] PASSED                         [ 27%]
tests/integration/inference/test_text_inference.py::test_text_completion_structured_output[txt=8B-inference:completion:structured_output] PASSED                   [ 33%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_non_streaming[txt=8B-inference:chat_completion:non_streaming_01] PASSED              [ 38%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_non_streaming[txt=8B-inference:chat_completion:non_streaming_02] PASSED              [ 44%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_first_token_profiling[txt=8B-inference:chat_completion:ttft] ^TPASSED                  [ 50%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_streaming[txt=8B-inference:chat_completion:streaming_01] PASSED                      [ 55%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_streaming[txt=8B-inference:chat_completion:streaming_02] PASSED                      [ 61%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_with_tool_calling_and_non_streaming[txt=8B-inference:chat_completion:tool_calling] PASSED [ 66%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_with_tool_calling_and_streaming[txt=8B-inference:chat_completion:tool_calling] PASSED [ 72%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_with_tool_choice_required[txt=8B-inference:chat_completion:tool_calling] PASSED      [ 77%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_with_tool_choice_none[txt=8B-inference:chat_completion:tool_calling] PASSED          [ 83%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_structured_output[txt=8B-inference:chat_completion:structured_output] PASSED         [ 88%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_tool_calling_tools_not_in_request[txt=8B-inference:chat_completion:tool_calling_tools_absent-True] PASSED [ 94%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_tool_calling_tools_not_in_request[txt=8B-inference:chat_completion:tool_calling_tools_absent-False] PASSED [100%]

=============================================================== 18 passed, 3 warnings in 755.79s (0:12:35) ===============================================================
```

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-03-24 12:42:55 -07:00
Yuan Tang
9ff82036f7
docs: Simplify vLLM deployment in K8s deployment guide (#1655)
# What does this PR do?

* Removes the use of `huggingface-cli` 
* Simplifies HF cache mount path
* Simplifies vLLM server startup command
* Separates PVC/secret creation from deployment/service
* Fixes a typo: "pod" should be "deployment"

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-03-24 09:08:50 -07:00
Xi Yan
094eb6a5ae
feat(rag): entire document context with attachments (#1763)
# What does this PR do?
**What**
Instead of adhoc creating a vectordb and chunking when documents ae sent
as an attachment to agent turn, we directly pass raw text from document
into messages to model for user context, and let model perform
summarization directly.

This removes the magic behaviour, and yields better performance than
existing approach.

**Improved Performance**
- RAG lifecycle notebook
  - Model: 0.3 factuality score
  - (+ websearch) Agent: 0.44 factuality score
  - (+ vector db) Agent: 0.3 factuality score
  - (+ raw context) Agent: 0.6 factuality score

Closes https://github.com/meta-llama/llama-stack/issues/1478

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
- [NEW] added section in RAG lifecycle notebook shows better performance

<img width="840" alt="image"
src="https://github.com/user-attachments/assets/a0c4e816-809a-41c0-9124-89825983e3f5"
/>


[//]: # (## Documentation)
2025-03-23 16:57:48 -07:00
Ashwin Bharambe
b1513e66d5 fix: sleep after notebook test 2025-03-23 14:03:35 -07:00
Hardik Shah
e4de9e59fd
fix: Update getting_started.ipynb (#1761)
as titled
2025-03-21 17:10:10 -07:00
Xi Yan
baf68c665c
fix: fix jobs api literal return type (#1757)
# What does this PR do?

- We cannot directly return a literal type

> Note: this is not final jobs API change

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
<img width="837" alt="image"
src="https://github.com/user-attachments/assets/18a17561-35f9-443d-987d-54afdd6ff40c"
/>


[//]: # (## Documentation)
2025-03-21 14:04:21 -07:00
Mark Campbell
711cfa00fc
docs: fix typos in evaluation concepts (#1745)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]
Typo fix for `output_dir` flag and misspelling of aggregate 
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
N/A
[//]: # (## Documentation)
2025-03-21 12:00:53 -07:00
Hardik Shah
395203ce0f
Update getting_started.ipynb
Fix numpy version mismatch issue
2025-03-20 22:00:08 -07:00
Hardik Shah
5a68a28263 Revert "install pandas and numpy beforehand to avoid version mismatch"
This reverts commit 6e0bc5b078.
2025-03-20 21:57:52 -07:00
Hardik Shah
5b9c366614
fix: install pandas and numpy beforehand to avoid version mismatch (#1735)
As titled, due to the recent upgrade of colab. 
Pandas was out of sync with numpy breaking `llama stack build` in colab
2025-03-20 17:14:05 -07:00
Hardik Shah
127bac6869
fix: Default to port 8321 everywhere (#1734)
As titled, moved all instances of 5001 to 8321
2025-03-20 15:50:41 -07:00
Hardik Shah
581e8ae562
fix: docker run with --pull always to fetch the latest image (#1733)
As titled
2025-03-20 15:35:48 -07:00