Commit graph

335 commits

Author SHA1 Message Date
Ben Browning
ee57e58f29
fix: loosen tool call checks in inference store (#2420)
# What does this PR do?

This loosens up the tool call function name and arguments checks in
`tests/integration/inference/test_openai_completion.py::test_inference_store_tool_calls`
because the small models we use in CI cannot reliably get the tool call
function name or arguments exactly right.

Closes #2345


## Test Plan

I ran this flaking test in a loop, let it run many dozens of times, and
didn't observe any flakes after the changes. Previously it flaked quite
regularly.

```
while uv run pytest -s -v \
    'tests/integration/inference/test_openai_completion.py::test_inference_store_tool_calls[llama_stack_client-txt=3B-False]' \
    --stack-config=http://localhost:8321 \
    --text-model="meta-llama/Llama-3.2-3B-Instruct" \
    --embedding-model=all-MiniLM-L6-v2; do; sleep 0.1; done
```

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-06-10 14:45:55 +02:00
Ibrahim Haroon
a34cef925b
fix(faiss): handle case where distance is 0 by setting d to minimum positive… (#2387)
# What does this PR do?
Adds try-catch to faiss `query_vector` function for when the distance
between the query embedding and an embedding within the vector db is 0
(identical vectors). Catches `ZeroDivisionError` and then appends `(1.0
/ sys.float_info.min)` to `scores` to represent maximum similarity.

<!-- If resolving an issue, uncomment and update the line below -->
Closes [#2381]

## Test Plan
Checkout this PR

Execute this code and there will no longer be a `ZeroDivisionError`
exception
```
from llama_stack_client import LlamaStackClient

base_url = "http://localhost:8321"
client = LlamaStackClient(base_url=base_url)

models = client.models.list()
embedding_model = (
    em := next(m for m in models if m.model_type == "embedding")
).identifier
embedding_dimension = 384

_ = client.vector_dbs.register(
    vector_db_id="foo_db",
    embedding_model=embedding_model,
    embedding_dimension=embedding_dimension,
    provider_id="faiss",
)

chunk = {
    "content": "foo",
    "mime_type": "text/plain",
    "metadata": {
        "document_id": "foo-id"
    }
}

client.vector_io.insert(vector_db_id="foo_db", chunks=[chunk])
client.vector_io.query(vector_db_id="foo_db", query="foo")
```

### Running unit tests
`uv run pytest tests/unit/rag/test_rag_query.py -v`

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
Co-authored-by: Ben Browning <bbrownin@redhat.com>
2025-06-07 16:09:46 -04:00
Sumit Jaiswal
33ecefd284
feat: To add health status check for remote VLLM (#2303)
Some checks failed
Integration Tests / test-matrix (library, 3.10, agents) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.10, datasets) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.10, inference) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.10, inspect) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.10, post_training) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.10, providers) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.10, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.11, agents) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.10, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, datasets) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, inference) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.11, inspect) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.11, post_training) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, scoring) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.11, providers) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.11, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 9s
Test External Providers / test-external-providers (venv) (push) Failing after 7s
Unit Tests / unit-tests (3.10) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 11s
Unit Tests / unit-tests (3.11) (push) Failing after 9s
Unit Tests / unit-tests (3.13) (push) Failing after 8s
Unit Tests / unit-tests (3.12) (push) Failing after 8s
Pre-commit / pre-commit (push) Successful in 56s
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
To add health status check for remote VLLM
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
PR includes the unit test to test the added health check implementation
feature.
2025-06-06 15:33:12 -04:00
Sébastien Han
0d0b8d2be1
ci: use ollama container image with loaded models (#2410)
Some checks failed
Integration Tests / test-matrix (library, 3.10, agents) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.10, inference) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.10, datasets) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.10, post_training) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.10, inspect) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.10, providers) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.10, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.10, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, agents) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.11, datasets) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.11, inference) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, inspect) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.11, post_training) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.11, providers) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.11, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.11, tool_runtime) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 8s
Test External Providers / test-external-providers (venv) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 16s
Unit Tests / unit-tests (3.11) (push) Failing after 8s
Unit Tests / unit-tests (3.10) (push) Failing after 9s
Unit Tests / unit-tests (3.12) (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 9s
Pre-commit / pre-commit (push) Successful in 1m3s
# What does this PR do?

Instead of downloading the models each time we now have a single Ollama
container that is baked with the models pulled and ready to use.

This will remove the CI flakiness on model pulling.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-06-06 12:08:20 +02:00
ehhuang
92b59a3377
test: skip files integrations tests for library client (#2407)
# What does this PR do?


## Test Plan
LLAMA_STACK_CONFIG=fireworks pytest -s -v
tests/integration/files/test_files.py::test_openai_client_basic_operations
2025-06-05 13:42:10 -07:00
Ashwin Bharambe
3251b44d8a
refactor: unify stream and non-stream impls for responses (#2388)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 3s
Integration Tests / test-matrix (http, datasets) (push) Failing after 9s
Integration Tests / test-matrix (http, agents) (push) Failing after 10s
Integration Tests / test-matrix (http, inference) (push) Failing after 9s
Integration Tests / test-matrix (http, inspect) (push) Failing after 8s
Integration Tests / test-matrix (http, post_training) (push) Failing after 9s
Integration Tests / test-matrix (http, providers) (push) Failing after 10s
Integration Tests / test-matrix (http, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, agents) (push) Failing after 9s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (library, datasets) (push) Failing after 10s
Integration Tests / test-matrix (library, inspect) (push) Failing after 9s
Integration Tests / test-matrix (library, inference) (push) Failing after 9s
Integration Tests / test-matrix (library, post_training) (push) Failing after 10s
Integration Tests / test-matrix (library, providers) (push) Failing after 9s
Integration Tests / test-matrix (library, scoring) (push) Failing after 9s
Test External Providers / test-external-providers (venv) (push) Failing after 7s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 11s
Unit Tests / unit-tests (3.11) (push) Failing after 8s
Unit Tests / unit-tests (3.12) (push) Failing after 7s
Unit Tests / unit-tests (3.13) (push) Failing after 9s
Unit Tests / unit-tests (3.10) (push) Failing after 30s
Pre-commit / pre-commit (push) Successful in 1m18s
The non-streaming version is just a small layer on top of the streaming
version - just pluck off the final `response.completed` event and return
that as the response!

This PR also includes a couple other changes which I ended up making
while working on it on a flight:
- changes to `ollama` so it does not pull embedding models
unconditionally
- a small fix to library client to make the stream and non-stream cases
a bit more symmetric
2025-06-05 17:48:09 +02:00
grs
7c1998db25
feat: fine grained access control policy (#2264)
This allows a set of rules to be defined for determining access to
resources. The rules are (loosely) based on the cedar policy format.

A rule defines a list of action either to permit or to forbid. It may
specify a principal or a resource that must match for the rule to take
effect. It may also specify a condition, either a 'when' or an 'unless',
with additional constraints as to where the rule applies.

A list of rules is held for each type to be protected and tried in order
to find a match. If a match is found, the request is permitted or
forbidden depening on the type of rule. If no match is found, the
request is denied. If no rules are specified for a given type, a rule
that allows any action as long as the resource attributes match the user
attributes is added (i.e. the previous behaviour is the default.

Some examples in yaml:

```
    model:
    - permit:
      principal: user-1
      actions: [create, read, delete]
      comment: user-1 has full access to all models
    - permit:
      principal: user-2
      actions: [read]
      resource: model-1
      comment: user-2 has read access to model-1 only
    - permit:
      actions: [read]
      when:
        user_in: resource.namespaces
      comment: any user has read access to models with matching attributes
    vector_db:
    - forbid:
      actions: [create, read, delete]
      unless:
        user_in: role::admin
      comment: only user with admin role can use vector_db resources
```

---------

Signed-off-by: Gordon Sim <gsim@redhat.com>
2025-06-03 14:51:12 -07:00
Ben Browning
8bee2954be
feat: Structured output for Responses API (#2324)
# What does this PR do?

This adds the missing `text` parameter to the Responses API that is how
users control structured outputs. All we do with that parameter is map
it to the corresponding chat completion response_format.

## Test Plan

The new unit tests exercise the various permutations allowed for this
property, while a couple of new verification tests actually use it for
real to verify the model outputs are following the format as expected.

Unit tests:

`python -m pytest -s -v
tests/unit/providers/agents/meta_reference/test_openai_responses.py`

Verification tests:

```
llama stack run llama_stack/templates/together/run.yaml
pytest -s -vv 'tests/verifications/openai_api/test_responses.py' \
  --base-url=http://localhost:8321/v1/openai/v1 \
  --model meta-llama/Llama-4-Scout-17B-16E-Instruct
```

Note that the verification tests can only be run with a real Llama Stack
server (as opposed to using the library client via
`--provider=stack:together`) because the Llama Stack python client is
not yet updated to accept this text field.

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-06-03 14:43:00 -07:00
ehhuang
3c9a10d2fe
feat: reference implementation for files API (#2330)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Integration Tests / test-matrix (http, post_training) (push) Failing after 9s
Integration Tests / test-matrix (http, agents) (push) Failing after 10s
Integration Tests / test-matrix (http, providers) (push) Failing after 8s
Integration Tests / test-matrix (http, inference) (push) Failing after 11s
Integration Tests / test-matrix (http, inspect) (push) Failing after 10s
Integration Tests / test-matrix (http, datasets) (push) Failing after 11s
Integration Tests / test-matrix (library, datasets) (push) Failing after 8s
Integration Tests / test-matrix (http, scoring) (push) Failing after 10s
Integration Tests / test-matrix (library, inference) (push) Failing after 8s
Integration Tests / test-matrix (library, agents) (push) Failing after 10s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 11s
Integration Tests / test-matrix (library, inspect) (push) Failing after 8s
Test External Providers / test-external-providers (venv) (push) Failing after 7s
Integration Tests / test-matrix (library, post_training) (push) Failing after 9s
Integration Tests / test-matrix (library, scoring) (push) Failing after 8s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 8s
Integration Tests / test-matrix (library, providers) (push) Failing after 9s
Unit Tests / unit-tests (3.11) (push) Failing after 7s
Unit Tests / unit-tests (3.10) (push) Failing after 7s
Unit Tests / unit-tests (3.12) (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 8s
Update ReadTheDocs / update-readthedocs (push) Failing after 6s
Pre-commit / pre-commit (push) Successful in 53s
# What does this PR do?
TSIA
Added Files provider to the fireworks template. Might want to add to all
templates as a follow-up.

## Test Plan
llama-stack pytest tests/unit/files/test_files.py

llama-stack llama stack build --template fireworks --image-type conda
--run
LLAMA_STACK_CONFIG=http://localhost:8321 pytest -s -v
tests/integration/files/
2025-06-02 21:54:24 -07:00
Ashwin Bharambe
dbe4e84aca
feat(responses): implement full multi-turn support (#2295)
I think the implementation needs more simplification. Spent way too much
time trying to get the tests pass with models not co-operating :(
Finally had to switch claude-sonnet to get things to pass reliably.

### Test Plan

```
export TAVILY_SEARCH_API_KEY=...
export OPENAI_API_KEY=...

uv run pytest -p no:warnings \
   -s -v tests/verifications/openai_api/test_responses.py \
 --provider=stack:starter \
  --model openai/gpt-4o
```
2025-06-02 15:35:49 -07:00
Ben Browning
17f4414be9
fix: remote-vllm event loop blocking unit test on Mac (#2332)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 6s
Integration Tests / test-matrix (http, datasets) (push) Failing after 9s
Integration Tests / test-matrix (http, scoring) (push) Failing after 8s
Integration Tests / test-matrix (http, inspect) (push) Failing after 9s
Integration Tests / test-matrix (http, post_training) (push) Failing after 10s
Integration Tests / test-matrix (library, datasets) (push) Failing after 9s
Integration Tests / test-matrix (library, agents) (push) Failing after 9s
Integration Tests / test-matrix (http, inference) (push) Failing after 11s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (http, agents) (push) Failing after 14s
Integration Tests / test-matrix (http, providers) (push) Failing after 13s
Integration Tests / test-matrix (library, inference) (push) Failing after 9s
Test External Providers / test-external-providers (venv) (push) Failing after 5s
Integration Tests / test-matrix (library, inspect) (push) Failing after 10s
Integration Tests / test-matrix (library, scoring) (push) Failing after 8s
Integration Tests / test-matrix (library, providers) (push) Failing after 10s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 9s
Unit Tests / unit-tests (3.11) (push) Failing after 8s
Unit Tests / unit-tests (3.10) (push) Failing after 8s
Unit Tests / unit-tests (3.12) (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 7s
Update ReadTheDocs / update-readthedocs (push) Failing after 7s
Integration Tests / test-matrix (library, post_training) (push) Failing after 29s
Pre-commit / pre-commit (push) Successful in 1m11s
# What does this PR do?

The remote-vllm `test_chat_completion_doesnt_block_event_loop` unit test
was often failing for me on a Mac with a `httpx.ReadError`. I traced
this back to the swap to the `AsyncOpenAI` client in the remote-vllm
provider as where this started, and it looks like the async client needs
a bit more accurate HTTP request handling from our mock server.

So, this fixes that unit test to send proper Content-Type and
Content-Length headers which makes the `AsyncOpenAI` client happier on
Macs.

## Test Plan

All the test_remote_vllm.py unit tests consistently pass for me on a Mac
now, without any flaking in the event loop one.

`pytest -s -v tests/unit/providers/inference/test_remote_vllm.py`

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-06-02 11:24:12 -04:00
Sébastien Han
1c0c6e1e17
chore: remove usage of load_tiktoken_bpe (#2276) 2025-06-02 07:33:37 -07:00
Hardik Shah
b21050935e
feat: New OpenAI compat embeddings API (#2314)
Some checks failed
Integration Tests / test-matrix (http, agents) (push) Failing after 9s
Integration Tests / test-matrix (http, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, inference) (push) Failing after 9s
Integration Tests / test-matrix (library, inspect) (push) Failing after 9s
Integration Tests / test-matrix (library, post_training) (push) Failing after 15s
Integration Tests / test-matrix (library, providers) (push) Failing after 14s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 43s
Integration Tests / test-matrix (library, scoring) (push) Failing after 8s
Integration Tests / test-matrix (http, inference) (push) Failing after 46s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 8s
Integration Tests / test-matrix (library, agents) (push) Failing after 44s
Integration Tests / test-matrix (http, inspect) (push) Failing after 47s
Integration Tests / test-matrix (http, providers) (push) Failing after 45s
Integration Tests / test-matrix (library, datasets) (push) Failing after 45s
Integration Tests / test-matrix (http, post_training) (push) Failing after 46s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 47s
Integration Tests / test-matrix (http, datasets) (push) Failing after 49s
Test External Providers / test-external-providers (venv) (push) Failing after 6s
Update ReadTheDocs / update-readthedocs (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 7s
Unit Tests / unit-tests (3.10) (push) Failing after 8s
Unit Tests / unit-tests (3.11) (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 7s
Pre-commit / pre-commit (push) Successful in 1m12s
# What does this PR do?
Adds a new endpoint that is compatible with OpenAI for embeddings api. 
`/openai/v1/embeddings`
Added providers for OpenAI, LiteLLM and SentenceTransformer. 


## Test Plan
```
LLAMA_STACK_CONFIG=http://localhost:8321 pytest -sv tests/integration/inference/test_openai_embeddings.py --embedding-model all-MiniLM-L6-v2,text-embedding-3-small,gemini/text-embedding-004
```
2025-05-31 22:11:47 -07:00
Francisco Arceo
f328436831
feat: Enable ingestion of precomputed embeddings (#2317)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 3s
Integration Tests / test-matrix (http, inspect) (push) Failing after 9s
Integration Tests / test-matrix (http, post_training) (push) Failing after 9s
Integration Tests / test-matrix (http, agents) (push) Failing after 10s
Integration Tests / test-matrix (http, datasets) (push) Failing after 10s
Integration Tests / test-matrix (http, inference) (push) Failing after 10s
Integration Tests / test-matrix (library, agents) (push) Failing after 9s
Integration Tests / test-matrix (http, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, datasets) (push) Failing after 8s
Integration Tests / test-matrix (http, providers) (push) Failing after 9s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (library, inference) (push) Failing after 9s
Test External Providers / test-external-providers (venv) (push) Failing after 6s
Integration Tests / test-matrix (library, inspect) (push) Failing after 8s
Integration Tests / test-matrix (library, providers) (push) Failing after 8s
Integration Tests / test-matrix (library, scoring) (push) Failing after 8s
Integration Tests / test-matrix (library, post_training) (push) Failing after 10s
Unit Tests / unit-tests (3.11) (push) Failing after 7s
Unit Tests / unit-tests (3.10) (push) Failing after 9s
Unit Tests / unit-tests (3.13) (push) Failing after 7s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 9s
Unit Tests / unit-tests (3.12) (push) Failing after 9s
Update ReadTheDocs / update-readthedocs (push) Failing after 7s
Pre-commit / pre-commit (push) Successful in 1m15s
2025-05-31 04:03:37 -06:00
ehhuang
2603f10f95
feat: support postgresql inference store (#2310)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 3s
Integration Tests / test-matrix (http, post_training) (push) Failing after 11s
Integration Tests / test-matrix (library, inference) (push) Failing after 13s
Integration Tests / test-matrix (http, providers) (push) Failing after 15s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 16s
Integration Tests / test-matrix (http, datasets) (push) Failing after 18s
Integration Tests / test-matrix (http, scoring) (push) Failing after 16s
Integration Tests / test-matrix (http, agents) (push) Failing after 19s
Integration Tests / test-matrix (library, datasets) (push) Failing after 16s
Integration Tests / test-matrix (http, inspect) (push) Failing after 18s
Integration Tests / test-matrix (library, agents) (push) Failing after 18s
Integration Tests / test-matrix (http, inference) (push) Failing after 20s
Integration Tests / test-matrix (library, inspect) (push) Failing after 9s
Integration Tests / test-matrix (library, post_training) (push) Failing after 10s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 8s
Test External Providers / test-external-providers (venv) (push) Failing after 8s
Integration Tests / test-matrix (library, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, providers) (push) Failing after 11s
Unit Tests / unit-tests (3.11) (push) Failing after 8s
Unit Tests / unit-tests (3.10) (push) Failing after 8s
Unit Tests / unit-tests (3.12) (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 8s
Pre-commit / pre-commit (push) Successful in 57s
# What does this PR do?
* Added support postgresql inference store
* Added 'oracle' template that demos how to config postgresql stores
(except for telemetry, which is not supported currently)


## Test Plan

llama stack build --template oracle --image-type conda --run
LLAMA_STACK_CONFIG=http://localhost:8321 pytest -s -v tests/integration/
--text-model accounts/fireworks/models/llama-v3p3-70b-instruct -k
'inference_store'
2025-05-29 14:33:09 -07:00
Ashwin Bharambe
bfdd15d1fa
fix(responses): use input, not original_input when storing the Response (#2300)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Integration Tests / test-matrix (http, datasets) (push) Failing after 9s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 7s
Integration Tests / test-matrix (http, providers) (push) Failing after 7s
Integration Tests / test-matrix (http, agents) (push) Failing after 9s
Integration Tests / test-matrix (http, inference) (push) Failing after 10s
Integration Tests / test-matrix (http, post_training) (push) Failing after 9s
Integration Tests / test-matrix (http, inspect) (push) Failing after 10s
Integration Tests / test-matrix (http, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, agents) (push) Failing after 10s
Integration Tests / test-matrix (library, datasets) (push) Failing after 9s
Integration Tests / test-matrix (library, inference) (push) Failing after 7s
Test External Providers / test-external-providers (venv) (push) Failing after 6s
Integration Tests / test-matrix (library, post_training) (push) Failing after 8s
Integration Tests / test-matrix (library, scoring) (push) Failing after 10s
Integration Tests / test-matrix (library, providers) (push) Failing after 10s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 9s
Integration Tests / test-matrix (library, inspect) (push) Failing after 11s
Unit Tests / unit-tests (3.10) (push) Failing after 8s
Unit Tests / unit-tests (3.12) (push) Failing after 9s
Unit Tests / unit-tests (3.11) (push) Failing after 9s
Unit Tests / unit-tests (3.13) (push) Failing after 7s
Update ReadTheDocs / update-readthedocs (push) Failing after 5s
Pre-commit / pre-commit (push) Failing after 53s
We must store the full (re-hydrated) input not just the original input
in the Response object. Of course, this is not very space efficient and
we should likely find a better storage scheme so that we can only store
unique entries in the database and then re-hydrate them efficiently
later. But that can be done safely later.

Closes https://github.com/meta-llama/llama-stack/issues/2299

## Test Plan

Unit test
2025-05-28 13:17:48 -07:00
Sébastien Han
6352078e4b
chore: use groups when running commands (#2298)
# What does this PR do?

Followup of https://github.com/meta-llama/llama-stack/pull/2287. We must
use `--group` when running commands with uv.

<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-28 09:13:16 -07:00
ehhuang
0b695538af
fix: chat completion with more than one choice (#2288)
Some checks failed
Integration Tests / test-matrix (http, inference) (push) Failing after 13s
Integration Tests / test-matrix (library, datasets) (push) Failing after 12s
Integration Tests / test-matrix (library, providers) (push) Failing after 9s
Unit Tests / unit-tests (3.10) (push) Failing after 9s
Unit Tests / unit-tests (3.12) (push) Failing after 1m33s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 8s
Integration Tests / test-matrix (library, agents) (push) Failing after 11s
Integration Tests / test-matrix (http, providers) (push) Failing after 13s
Integration Tests / test-matrix (library, scoring) (push) Failing after 10s
Unit Tests / unit-tests (3.13) (push) Failing after 9s
Integration Tests / test-matrix (http, datasets) (push) Failing after 10s
Integration Tests / test-matrix (http, post_training) (push) Failing after 13s
Integration Tests / test-matrix (library, inference) (push) Failing after 11s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 9s
Update ReadTheDocs / update-readthedocs (push) Failing after 7s
Integration Tests / test-matrix (http, agents) (push) Failing after 11s
Integration Tests / test-matrix (http, inspect) (push) Failing after 10s
Integration Tests / test-matrix (http, scoring) (push) Failing after 10s
Integration Tests / test-matrix (library, inspect) (push) Failing after 10s
Integration Tests / test-matrix (library, post_training) (push) Failing after 10s
Test External Providers / test-external-providers (venv) (push) Failing after 8s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 10s
Unit Tests / unit-tests (3.11) (push) Failing after 8s
Pre-commit / pre-commit (push) Successful in 3m18s
# What does this PR do?
Fix a bug in openai_compat where choices are not indexed correctly.

## Test Plan
Added a new test.

Rerun the failed inference_store tests:
llama stack run fireworks --image-type conda
pytest -s -v tests/integration/ --stack-config http://localhost:8321 -k
'test_inference_store' --text-model meta-llama/Llama-3.3-70B-Instruct
--count 10
2025-05-27 15:39:15 -07:00
ehhuang
1d46f3102e
fix: enable test_responses_store (#2290)
# What does this PR do?
Changed the test to not require tool_call in output, but still keeping
the tools params there as a smoke test.

## Test Plan
Used llama3.3 from fireworks (same as CI)
<img width="1433" alt="image"
src="https://github.com/user-attachments/assets/1e5fca98-9b4f-402e-a0bc-d9f910f2c207"
/>

Run with ollama distro and 3b model.
2025-05-27 15:37:28 -07:00
Ashwin Bharambe
5cdb29758a
feat(responses): add output_text delta events to responses (#2265)
This adds initial streaming support to the Responses API. 

This PR makes sure that the _first_ inference call made to chat
completions streams out.

There's more to be done:
 - tool call output tokens need to stream out when possible
- we need to loop through multiple rounds of inference and they all need
to stream out.

## Test Plan

Added a test. Executed as:

```
FIREWORKS_API_KEY=... \
  pytest -s -v 'tests/verifications/openai_api/test_responses.py' \
  --provider=stack:fireworks --model meta-llama/Llama-4-Scout-17B-16E-Instruct
```

Then, started a llama stack fireworks distro and tested against it like
this:

```
OPENAI_API_KEY=blah \
   pytest -s -v 'tests/verifications/openai_api/test_responses.py' \
   --base-url http://localhost:8321/v1/openai/v1 \
  --model meta-llama/Llama-4-Scout-17B-16E-Instruct 
```
2025-05-27 13:07:14 -07:00
Sébastien Han
448f00903d
chore: mark blobpath as optional (#2271)
# What does this PR do?

This is not a core dependency of the distro server. It's only necessary
when using `inline::rag-runtime` or `inline::meta-reference` providers.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-27 10:55:24 +02:00
Ashwin Bharambe
7504c2f430
test: disable test_inference_store test urrrggg (#2273)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 45s
Integration Tests / test-matrix (http, agents) (push) Failing after 51s
Integration Tests / test-matrix (http, post_training) (push) Failing after 49s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 50s
Integration Tests / test-matrix (http, inspect) (push) Failing after 52s
Integration Tests / test-matrix (library, inference) (push) Failing after 9s
Integration Tests / test-matrix (library, agents) (push) Failing after 54s
Integration Tests / test-matrix (http, datasets) (push) Failing after 57s
Integration Tests / test-matrix (library, datasets) (push) Failing after 52s
Integration Tests / test-matrix (http, inference) (push) Failing after 58s
Integration Tests / test-matrix (http, scoring) (push) Failing after 55s
Integration Tests / test-matrix (http, providers) (push) Failing after 56s
Integration Tests / test-matrix (library, inspect) (push) Failing after 10s
Integration Tests / test-matrix (library, providers) (push) Failing after 10s
Integration Tests / test-matrix (library, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, post_training) (push) Failing after 13s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 11s
Test External Providers / test-external-providers (venv) (push) Failing after 8s
Unit Tests / unit-tests (3.11) (push) Failing after 9s
Unit Tests / unit-tests (3.12) (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 8s
Unit Tests / unit-tests (3.10) (push) Failing after 1m41s
Pre-commit / pre-commit (push) Successful in 3m32s
2025-05-26 22:48:41 -07:00
Ashwin Bharambe
9623d5d230
fix: match mcp headers in provider data to Responses API shape (#2263) 2025-05-25 14:33:10 -07:00
Ashwin Bharambe
ce33d02443
fix(tools): do not index tools, only index toolgroups (#2261)
When registering a MCP endpoint, we cannot list tools (like we used to)
since the MCP endpoint may be behind an auth wall. Registration can
happen much sooner (via run.yaml).

Instead, we do listing only when the _user_ actually calls listing.
Furthermore, we cache the list in-memory in the server. Currently, the
cache is not invalidated -- we may want to periodically re-list for MCP
servers. Note that they must call `list_tools` before calling
`invoke_tool` -- we use this critically.

This will enable us to list MCP servers in run.yaml

## Test Plan

Existing tests, updated tests accordingly.
2025-05-25 13:27:52 -07:00
Ashwin Bharambe
298721c238
chore: split routing_tables into individual files (#2259) 2025-05-24 23:15:05 -07:00
Ashwin Bharambe
eedf21f19c
chore: split routers into individual files (inference, tool, vector_io, eval_scoring) (#2258) 2025-05-24 22:59:07 -07:00
Ashwin Bharambe
3faf1e4a79
feat: enable MCP execution in Responses impl (#2240)
## Test Plan

```
pytest -s -v 'tests/verifications/openai_api/test_responses.py' \
  --provider=stack:together --model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
2025-05-24 14:20:42 -07:00
Ashwin Bharambe
66f09f24ed
fix: disable test_responses_store (#2244)
The test depends on llama's tool calling ability. In the CI, we run with
a small ollama model.

The fix might be to check for either message or function_call because
the model is flaky and we aren't really testing that behavior?
2025-05-24 08:18:06 -07:00
raghotham
84751f3e55
fix: skip failing tests (#2243)
as title. trying release 0.2.8
2025-05-24 07:31:08 -07:00
ehhuang
15b0a67555
feat: add responses input items api (#2239)
# What does this PR do?
TSIA

## Test Plan
added integration and unit tests
2025-05-24 07:05:53 -07:00
ehhuang
5844c2da68
feat: add list responses API (#2233)
# What does this PR do?
This is not part of the official OpenAI API, but we'll use this for the
logs UI.
In order to support more filtering options, I'm adopting the newly
introduced sql store in in place of the kv store.

## Test Plan
Added integration/unit tests.
2025-05-23 13:16:48 -07:00
Ashwin Bharambe
6463ee7633
feat: allow using llama-stack-library-client from verifications (#2238)
Having to run (and re-run) a server while running verifications can be
annoying while you are iterating on code. This makes it so you can use
the library client -- and because it is OpenAI client compatible, it all
works.

## Test Plan

```
pytest -s -v tests/verifications/openai_api/test_responses.py \
   --provider=stack:together \
   --model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
2025-05-23 11:43:41 -07:00
Ashwin Bharambe
51945f1e57
feat: accept MCP authorization headers for MCP toolgroups (#2230)
The most interesting MCP servers are those with an authorization wall in
front of them. This PR uses the existing `provider_data` mechanism of
passing provider API keys for passing MCP access tokens (in fact,
arbitrary headers in the style of the OpenAI Responses API) from the
client through to the MCP server.

```
class MCPProviderDataValidator(BaseModel):
    # mcp_endpoint => list of headers to send
    mcp_headers: dict[str, list[str]] | None = None
```

Note how we must stuff the headers for all MCP endpoints into a single
"MCPProviderDataValidator". Unlike existing providers (e.g., Together
and Fireworks for inference) where we could name the provider api keys
clearly (`together_api_key`, `fireworks_api_key`), we cannot name these
keys for MCP. We have a single generic MCP provider which can serve
multiple "toolgroups". So we use a dict to combine all the headers for
all MCP endpoints you may want to use in an agentic call.


## Test Plan

See the added integration test for usage.
2025-05-23 08:52:18 -07:00
ehhuang
549812f51e
feat: implement get chat completions APIs (#2200)
# What does this PR do?
* Provide sqlite implementation of the APIs introduced in
https://github.com/meta-llama/llama-stack/pull/2145.
* Introduced a SqlStore API: llama_stack/providers/utils/sqlstore/api.py
and the first Sqlite implementation
* Pagination support will be added in a future PR.

## Test Plan
Unit test on sql store:
<img width="1005" alt="image"
src="https://github.com/user-attachments/assets/9b8b7ec8-632b-4667-8127-5583426b2e29"
/>


Integration test:
```
INFERENCE_MODEL="llama3.2:3b-instruct-fp16" llama stack build --template ollama --image-type conda --run
```
```
LLAMA_STACK_CONFIG=http://localhost:5001 INFERENCE_MODEL="llama3.2:3b-instruct-fp16" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-fp16" -k 'inference_store and openai'
```
2025-05-21 22:21:52 -07:00
Varsha
e92301f2d7
feat(sqlite-vec): enable keyword search for sqlite-vec (#1439)
# What does this PR do?
This PR introduces support for keyword based FTS5 search with BM25
relevance scoring. It makes changes to the existing EmbeddingIndex base
class in order to support a search_mode and query_str parameter, that
can be used for keyword based search implementations.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
run 
```
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
```
Output:
```
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
/Users/vnarsing/miniconda3/envs/stack-client/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
====================================================== test session starts =======================================================
platform darwin -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-14.7.4-arm64-arm-64bit', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0'}}
rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack
configfile: pyproject.toml
plugins: html-4.1.1, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0
asyncio: mode=auto, asyncio_default_fixture_loop_scope=None
collected 7 items                                                                                                                

llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_add_chunks PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_vector PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_fts PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_chunk_id_conflict PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_register_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_unregister_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_generate_chunk_id PASSED
```


For reference, with the implementation, the fts table looks like below:
```
Chunk ID: 9fbc39ce-c729-64a2-260f-c5ec9bb2a33e, Content: Sentence 0 from document 0
Chunk ID: 94062914-3e23-44cf-1e50-9e25821ba882, Content: Sentence 1 from document 0
Chunk ID: e6cfd559-4641-33ba-6ce1-7038226495eb, Content: Sentence 2 from document 0
Chunk ID: 1383af9b-f1f0-f417-4de5-65fe9456cc20, Content: Sentence 3 from document 0
Chunk ID: 2db19b1a-de14-353b-f4e1-085e8463361c, Content: Sentence 4 from document 0
Chunk ID: 9faf986a-f028-7714-068a-1c795e8f2598, Content: Sentence 5 from document 0
Chunk ID: ef593ead-5a4a-392f-7ad8-471a50f033e8, Content: Sentence 6 from document 0
Chunk ID: e161950f-021f-7300-4d05-3166738b94cf, Content: Sentence 7 from document 0
Chunk ID: 90610fc4-67c1-e740-f043-709c5978867a, Content: Sentence 8 from document 0
Chunk ID: 97712879-6fff-98ad-0558-e9f42e6b81d3, Content: Sentence 9 from document 0
Chunk ID: aea70411-51df-61ba-d2f0-cb2b5972c210, Content: Sentence 0 from document 1
Chunk ID: b678a463-7b84-92b8-abb2-27e9a1977e3c, Content: Sentence 1 from document 1
Chunk ID: 27bd63da-909c-1606-a109-75bdb9479882, Content: Sentence 2 from document 1
Chunk ID: a2ad49ad-f9be-5372-e0c7-7b0221d0b53e, Content: Sentence 3 from document 1
Chunk ID: cac53bcd-1965-082a-c0f4-ceee7323fc70, Content: Sentence 4 from document 1
```

Query results:
Result 1: Sentence 5 from document 0
Result 2: Sentence 5 from document 1
Result 3: Sentence 5 from document 2

[//]: # (## Documentation)

---------

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
2025-05-21 15:24:24 -04:00
Sébastien Han
1862de4be5
chore: clarify cache_ttl to be key_recheck_period (#2220)
# What does this PR do?

The cache_ttl config value is not in fact tied to the lifetime of any of
the keys, it represents the time interval between for our key cache
refresher.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-21 17:30:23 +02:00
Sébastien Han
c25acedbcd
chore: remove k8s auth in favor of k8s jwks endpoint (#2216)
# What does this PR do?

Kubernetes since 1.20 exposes a JWKS endpoint that we can use with our
recent oauth2 recent implementation.
The CI test has been kept intact for validation.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-21 16:23:54 +02:00
liangwen12year
2890243107
feat(quota): add server‑side per‑client request quotas (requires auth) (#2096)
# What does this PR do?
feat(quota): add server‑side per‑client request quotas (requires auth)
    
Unrestricted usage can lead to runaway costs and fragmented client-side
    workarounds. This commit introduces a native quota mechanism to the
    server, giving operators a unified, centrally managed throttle for
    per-client requests—without needing extra proxies or custom client
logic. This helps contain cloud-compute expenses, enables fine-grained
usage control, and simplifies deployment and monitoring of Llama Stack
services. Quotas are fully opt-in and have no effect unless explicitly
    configured.
    
    Notice that Quotas are fully opt-in and require authentication to be
enabled. The 'sqlite' is the only supported quota `type` at this time,
any other `type` will be rejected. And the only supported `period` is
    'day'.
    
    Highlights:
    
    - Adds `QuotaMiddleware` to enforce per-client request quotas:
      - Uses `Authorization: Bearer <client_id>` (from
        AuthenticationMiddleware)
      - Tracks usage via a SQLite-based KV store
      - Returns 429 when the quota is exceeded
    
    - Extends `ServerConfig` with a `quota` section (type + config)
    
- Enforces strict coupling: quotas require authentication or the server
      will fail to start
    
    Behavior changes:
    - Quotas are disabled by default unless explicitly configured
    - SQLite defaults to `./quotas.db` if no DB path is set
    - The server requires authentication when quotas are enabled
    
    To enable per-client request quotas in `run.yaml`, add:
    ```
    server:
      port: 8321
      auth:
        provider_type: "custom"
        config:
          endpoint: "https://auth.example.com/validate"
      quota:
        type: sqlite
        config:
          db_path: ./quotas.db
          limit:
            max_requests: 1000
            period: day

[//]: # (If resolving an issue, uncomment and update the line below)
Closes #2093

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Signed-off-by: Wen Liang <wenliang@redhat.com>
Co-authored-by: Wen Liang <wenliang@redhat.com>
2025-05-21 10:58:45 +02:00
grs
091d8c48f2
feat: add additional auth provider that uses oauth token introspection (#2187)
# What does this PR do?

This adds an alternative option to the oauth_token auth provider that
can be used with existing authorization services which support token
introspection as defined in RFC 7662. This could be useful where token
revocation needs to be handled or where opaque tokens (or other non jwt
formatted tokens) are used

## Test Plan
Tested against keycloak

Signed-off-by: Gordon Sim <gsim@redhat.com>
2025-05-20 19:45:11 -07:00
Derek Higgins
3339844fda
feat: Add "instructions" support to responses API (#2205)
# What does this PR do?
Add support for "instructions" to the responses API. Instructions
provide a way to swap out system (or developer) messages in new
responses.


## Test Plan
unit tests added

Signed-off-by: Derek Higgins <derekh@redhat.com>
2025-05-20 09:52:10 -07:00
Jash Gulabrai
1a770cf8ac
fix: Pass model parameter as config name to NeMo Customizer (#2218)
# What does this PR do?
When launching a fine-tuning job, an upcoming version of NeMo Customizer
will expect the `config` name to be formatted as
`namespace/name@version`. Here, `config` is a reference to a model +
additional metadata. There could be multiple `config`s that reference
the same base model.

This PR updates NVIDIA's `supervised_fine_tune` to simply pass the
`model` param as-is to NeMo Customizer. Currently, it expects a
specific, allowlisted llama model (i.e. `meta/Llama3.1-8B-Instruct`) and
converts it to the provider format (`meta/llama-3.1-8b-instruct`).

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
From a notebook, I built an image with my changes: 
```
!llama stack build --template nvidia --image-type venv
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient

client = LlamaStackAsLibraryClient("nvidia")
client.initialize()
```
And could successfully launch a job:
```
response = client.post_training.supervised_fine_tune(
    job_uuid="",
    model="meta/llama-3.2-1b-instruct@v1.0.0+A100", # Model passed as-is to Customimzer
    ...
)

job_id = response.job_uuid
print(f"Created job with ID: {job_id}")

Output:
Created job with ID: cust-Jm4oGmbwcvoufaLU4XkrRU
```

[//]: # (## Documentation)

---------

Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
2025-05-20 09:51:39 -07:00
Ashwin Bharambe
c7015d3d60
feat: introduce OAuth2TokenAuthProvider and notion of "principal" (#2185)
This PR adds a notion of `principal` (aka some kind of persistent
identity) to the authentication infrastructure of the Stack. Until now
we only used access attributes ("claims" in the more standard OAuth /
OIDC setup) but we need the notion of a User fundamentally as well.
(Thanks @rhuss for bringing this up.)

This value is not yet _used_ anywhere downstream but will be used to
segregate access to resources.

In addition, the PR introduces a built-in JWT token validator so the
Stack does not need to contact an authentication provider to validating
the authorization and merely check the signed token for the represented
claims. Public keys are refreshed via the configured JWKS server. This
Auth Provider should overwhelmingly be considered the default given the
seamless integration it offers with OAuth setups.
2025-05-18 17:54:19 -07:00
Charlie Doern
f02f7b28c1
feat: add huggingface post_training impl (#2132)
# What does this PR do?


adds an inline HF SFTTrainer provider. Alongside touchtune -- this is a
super popular option for running training jobs. The config allows a user
to specify some key fields such as a model, chat_template, device, etc

the provider comes with one recipe `finetune_single_device` which works
both with and without LoRA.

any model that is a valid HF identifier can be given and the model will
be pulled.

this has been tested so far with CPU and MPS device types, but should be
compatible with CUDA out of the box

The provider processes the given dataset into the proper format,
establishes the various steps per epoch, steps per save, steps per eval,
sets a sane SFTConfig, and runs n_epochs of training

if checkpoint_dir is none, no model is saved. If there is a checkpoint
dir, a model is saved every `save_steps` and at the end of training.


## Test Plan

re-enabled post_training integration test suite with a singular test
that loads the simpleqa dataset:
https://huggingface.co/datasets/llamastack/simpleqa and a tiny granite
model: https://huggingface.co/ibm-granite/granite-3.3-2b-instruct. The
test now uses the llama stack client and the proper post_training API

runs one step with a batch_size of 1. This test runs on CPU on the
Ubuntu runner so it needs to be a small batch and a single step.

[//]: # (## Documentation)

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-05-16 14:41:28 -07:00
ehhuang
953ccffca2
test: catch BadRequestError for non-library client (#2195)
# What does this PR do?


## Test Plan
LLAMA_STACK_CONFIG=http://localhost:8321 pytest
tests/integration/tool_runtime/test_rag_tool.py --embedding-model
text-embedding-3-small
2025-05-16 12:26:59 -07:00
Ben Browning
10b1056dea
fix: multiple tool calls in remote-vllm chat_completion (#2161)
# What does this PR do?

This fixes an issue in how we used the tool_call_buf from streaming tool
calls in the remote-vllm provider where it would end up concatenating
parameters from multiple different tool call results instead of
aggregating the results from each tool call separately.

It also fixes an issue found while digging into that where we were
accidentally mixing the json string form of tool call parameters with
the string representation of the python form, which mean we'd end up
with single quotes in what should be double-quoted json strings.

Closes #1120

## Test Plan

The following tests are now passing 100% for the remote-vllm provider,
where some of the test_text_inference were failing before this change:

```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/inference/test_text_inference.py --text-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"

VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/inference/test_vision_inference.py --vision-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"

```

All but one of the agent tests are passing (including the multi-tool
one). See the PR at https://github.com/vllm-project/vllm/pull/17917 and
a gist at
https://gist.github.com/bbrowning/4734240ce96b4264340caa9584e47c9e for
changes needed there, which will have to get made upstream in vLLM.

Agent tests:

```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/agents/test_agents.py --text-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"
````

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-05-15 11:23:29 -07:00
Charlie Doern
e46de23be6
feat: refactor external providers dir (#2049)
# What does this PR do?

currently the "default" dir for external providers is
`/etc/llama-stack/providers.d`

This dir is not used anywhere nor created.

Switch to a more friendly `~/.llama/providers.d/`

This allows external providers to actually create this dir and/or
populate it upon installation, `pip` cannot create directories in `etc`.

If a user does not specify a dir, default to this one

see https://github.com/containers/ramalama-stack/issues/36

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-05-15 20:17:03 +02:00
Francisco Arceo
8e7ab146f8
feat: Adding support for customizing chunk context in RAG insertion and querying (#2134)
# What does this PR do?
his PR allows users to customize the template used for chunks when
inserted into the context. Additionally, this enables metadata injection
into the context of an LLM for RAG. This makes a naive and crude
assumption that each chunk should include the metadata, this is
obviously redundant when multiple chunks are returned from the same
document. In order to remove any sort of duplication of chunks, we'd
have to make much more significant changes so this is a reasonable first
step that unblocks users requesting this enhancement in
https://github.com/meta-llama/llama-stack/issues/1767.

In the future, this can be extended to support citations.


List of Changes:
- `llama_stack/apis/tools/rag_tool.py`
    - Added  `chunk_template` field in `RAGQueryConfig`.
- Added `field_validator` to validate the `chunk_template` field in
`RAGQueryConfig`.
- Ensured the `chunk_template` field includes placeholders `{index}` and
`{chunk.content}`.
- Updated the `query` method to use the `chunk_template` for formatting
chunk text content.
- `llama_stack/providers/inline/tool_runtime/rag/memory.py`
- Modified the `insert` method to pass `doc.metadata` for chunk
creation.
- Enhanced the `query` method to format results using `chunk_template`
and exclude unnecessary metadata fields like `token_count`.
- `llama_stack/providers/utils/memory/vector_store.py`
- Updated `make_overlapped_chunks` to include metadata serialization and
token count for both content and metadata.
    - Added error handling for metadata serialization issues.
- `pyproject.toml`
- Added `pydantic.field_validator` as a recognized `classmethod`
decorator in the linting configuration.
- `tests/integration/tool_runtime/test_rag_tool.py`
- Refactored test assertions to separate `assert_valid_chunk_response`
and `assert_valid_text_response`.
- Added integration tests to validate `chunk_template` functionality
with and without metadata inclusion.
- Included a test case to ensure `chunk_template` validation errors are
raised appropriately.
- `tests/unit/rag/test_vector_store.py`
- Added unit tests for `make_overlapped_chunks`, verifying chunk
creation with overlapping tokens and metadata integrity.
- Added tests to handle metadata serialization errors, ensuring proper
exception handling.
- `docs/_static/llama-stack-spec.html`
- Added a new `chunk_template` field of type `string` with a default
template for formatting retrieved chunks in RAGQueryConfig.
    - Updated the `required` fields to include `chunk_template`.
- `docs/_static/llama-stack-spec.yaml`
- Introduced `chunk_template` field with a default value for
RAGQueryConfig.
- Updated the required configuration list to include `chunk_template`.
- `docs/source/building_applications/rag.md`
- Documented the `chunk_template` configuration, explaining how to
customize metadata formatting in RAG queries.
- Added examples demonstrating the usage of the `chunk_template` field
in RAG tool queries.
    - Highlighted default values for `RAG` agent configurations.

# Resolves https://github.com/meta-llama/llama-stack/issues/1767

## Test Plan
Updated both `test_vector_store.py` and `test_rag_tool.py` and tested
end-to-end with a script.

I also tested the quickstart to enable this and specified this metadata:
```python
document = RAGDocument(
    document_id="document_1",
    content=source,
    mime_type="text/html",
    metadata={"author": "Paul Graham", "title": "How to do great work"},
)
```
Which produced the output below: 

![Screenshot 2025-05-13 at 10 53
43 PM](https://github.com/user-attachments/assets/bb199d04-501e-4217-9c44-4699d43d5519)

This highlights the usefulness of the additional metadata. Notice how
the metadata is redundant for different chunks of the same document. I
think we can update that in a subsequent PR.

# Documentation
I've added a brief comment about this in the documentation to outline
this to users and updated the API documentation.

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-05-14 21:56:20 -04:00
Ben Browning
b42eb1ccbc
fix: Responses API: handle type=None in streaming tool calls (#2166)
# What does this PR do?

In the Responses API, we convert incoming response requests to chat
completion requests. When streaming the resulting chunks of those chat
completion requests, inference providers that use OpenAI clients will
often return a `type=None` value in the tool call parts of the response.
This causes issues when we try to dump and load that response into our
pydantic model, because type cannot be None in the Responses API model
we're loading these into.

So, strip the "type" field, if present, off those chat completion tool
call results before dumping and loading them as our typed pydantic
models, which will apply our default value for that type field.

## Test Plan

This was found via manual testing of the Responses API with codex, where
I was getting errors in some tool call situations. I added a unit test
to simulate this scenario and verify the fix, as well as manual codex
testing to verify the fix.

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-05-14 14:16:33 -07:00
Ilya Kolchinsky
5052c3cbf3
fix: Fixed an "out of token budget" error when attempting a tool call via remote vLLM provider (#2114)
# What does this PR do?
Closes #2113.
Closes #1783.

Fixes a bug in handling the end of tool execution request stream where
no `finish_reason` is provided by the model.

## Test Plan
1. Ran existing unit tests
2. Added a dedicated test verifying correct behavior in this edge case
3. Ran the code snapshot from #2113

[//]: # (## Documentation)
2025-05-14 13:11:02 -07:00
Ilya Kolchinsky
43d4447ff0
fix: remote vLLM tool execution now works when the last chunk contains the call arguments (#2112)
# What does this PR do?
Closes #2111.
Fixes an error causing Llama Stack to just return `<tool_call>` and
complete the turn without actually executing the tool. See the issue
description for more detail.

## Test Plan
1) Ran existing unit tests
2) Added a dedicated test verifying correct behavior in this edge case
3) Ran the code snapshot from #2111
2025-05-14 11:38:00 +02:00