# What does this PR do?
This is an initial working prototype of wiring up the `file_search`
builtin tool for the Responses API to our existing rag knowledge search
tool.
This is me seeing what I could pull together on top of the bits we
already have merged. This may not be the ideal way to implement this,
and things like how I shuffle the vector store ids from the original
response API tool request to the actual tool execution feel a bit hacky
(grep for `tool_kwargs["vector_db_ids"]` in `_execute_tool_call` to see
what I mean).
## Test Plan
I stubbed in some new tests to exercise this using text and pdf
documents.
Note that this is currently under tests/verification only because it
sometimes flakes with tool calling of the small Llama-3.2-3B model we
run in CI (and that I use as an example below). We'd want to make the
test a bit more robust in some way if we moved this over to
tests/integration and ran it in CI.
### OpenAI SaaS (to verify test correctness)
```
pytest -sv tests/verifications/openai_api/test_responses.py \
-k 'file_search' \
--base-url=https://api.openai.com/v1 \
--model=gpt-4o
```
### Fireworks with faiss vector store
```
llama stack run llama_stack/templates/fireworks/run.yaml
pytest -sv tests/verifications/openai_api/test_responses.py \
-k 'file_search' \
--base-url=http://localhost:8321/v1/openai/v1 \
--model=meta-llama/Llama-3.3-70B-Instruct
```
### Ollama with faiss vector store
This sometimes flakes on Ollama because the quantized small model
doesn't always choose to call the tool to answer the user's question.
But, it often works.
```
ollama run llama3.2:3b
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack run ./llama_stack/templates/ollama/run.yaml \
--image-type venv \
--env OLLAMA_URL="http://0.0.0.0:11434"
pytest -sv tests/verifications/openai_api/test_responses.py \
-k'file_search' \
--base-url=http://localhost:8321/v1/openai/v1 \
--model=meta-llama/Llama-3.2-3B-Instruct
```
### OpenAI provider with sqlite-vec vector store
```
llama stack run ./llama_stack/templates/starter/run.yaml --image-type venv
pytest -sv tests/verifications/openai_api/test_responses.py \
-k 'file_search' \
--base-url=http://localhost:8321/v1/openai/v1 \
--model=openai/gpt-4o-mini
```
### Ensure existing vector store integration tests still pass
```
ollama run llama3.2:3b
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack run ./llama_stack/templates/ollama/run.yaml \
--image-type venv \
--env OLLAMA_URL="http://0.0.0.0:11434"
LLAMA_STACK_CONFIG=http://localhost:8321 \
pytest -sv tests/integration/vector_io \
--text-model "meta-llama/Llama-3.2-3B-Instruct" \
--embedding-model=all-MiniLM-L6-v2
```
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Updated the `search` functionality return response to match openai.
## Test Plan
```
pytest -sv --stack-config=http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2
```
Extracts common OpenAI vector-store code into its own mixin so that all
providers can share the same core logic.
This also makes it easy for Llama Stack to support both vector-stores
and Llama Stack APIs in the interim so that both share the same
underlying vector-dbs.
Each provider contains storage specific logic to `create / edit / delete
/ list` vector dbs while the plumbing logic is standardized in the
common code.
Ensured that this works well with both faiss and sqllite-vec.
### Test Plan
```
llama stack run starter
pytest -sv --stack-config http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2
```
Adding OpenAI compat `/v1/vector-store` apis.
This PR implements the `faiss` provider with followup PRs coming up for
other providers.
Added routes to create, update, delete, list vector stores.
Also added route to search a vector store
Inserting into vector stores is missing and will be a follow up diff.
### Test Plan
- Added new integration test for testing the faiss provider
```
pytest -sv --stack-config http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2
```