Commit graph

78 commits

Author SHA1 Message Date
Ben Browning
fa5dfee07b
fix: Return HTTP 400 for OpenAI API validation errors (#2002)
# What does this PR do?

When clients called the Open AI API with invalid input that wasn't
caught by our own Pydantic API validation but instead only caught by the
backend inference provider, that backend inference provider was
returning a HTTP 400 error. However, we were wrapping that into a HTTP
500 error, obfuscating the actual issue from calling clients and
triggering OpenAI client retry logic.

This change adjusts our existing `translate_exception` method in
`server.py` to wrap `openai.BadRequestError` as HTTP 400 errors, passing
through the string representation of the error message to the calling
user so they can see the actual input validation error and correct it. I
tried changing this in a few other places, but ultimately
`translate_exception` was the only real place to handle this for both
streaming and non-streaming requests across all inference providers that
use the OpenAI server APIs.

This also tightens up our validation a bit for the OpenAI chat
completions API, to catch empty `messages` parameters, invalid
`tool_choice` parameters, invalid `tools` items, or passing
`tool_choice` when `tools` isn't given.

Lastly, this extends our OpenAI API chat completions verifications to
also check for consistent input validation across providers. Providers
behind Llama Stack should automatically pass all the new tests due to
the input validation added here, but some of the providers fail this
test when not run behind Llama Stack due to differences in how they
handle input validation and errors.

(Closes #1951)

## Test Plan

To test this, start an OpenAI API  verification stack:

```
llama stack run --image-type venv tests/verifications/openai-api-verification-run.yaml
```

Then, run the new verification tests with your provider(s) of choice:

```
python -m pytest -s -v \
  tests/verifications/openai_api/test_chat_completion.py \
  --provider openai-llama-stack

python -m pytest -s -v \
  tests/verifications/openai_api/test_chat_completion.py \
  --provider together-llama-stack
```

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-04-23 17:48:32 +02:00
Ben Browning
dc46725f56
fix: properly handle streaming client disconnects (#2000)
# What does this PR do?

Previously, when a streaming client would disconnect before we were
finished streaming the entire response, an error like the below would
get raised from the `sse_generator` function in
`llama_stack/distribution/server/server.py`:

```
AttributeError: 'coroutine' object has no attribute 'aclose'. Did you mean: 'close'?
```

This was because we were calling `aclose` on a coroutine instead of the
awaited value from that coroutine. This change fixes that, so that we
save off the awaited value and then can call `aclose` on it if we
encounter an `asyncio.CancelledError`, like we see when a client
disconnects before we're finished streaming.

The other changes in here are to add a simple set of tests for the happy
path of our SSE streaming and this client disconnect path.

That unfortunately requires adding one more dependency into our unit
test section of pyproject.toml since `server.py` requires loading some
of the telemetry code for me to test this functionality.

## Test Plan

I wrote the tests in `tests/unit/server/test_sse.py` first, verified the
client disconnected test failed before my change, and that it passed
afterwards.

```
python -m pytest -s -v tests/unit/server/test_sse.py
```

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-04-23 15:44:28 +02:00
Kevin Postlethwait
3110ad1e7c
fix: update ref to raw_errors due to new version of pydantic (#1995)
37da47ef8e (diff-4d7c51b1efe9043e44439a949dfd92e5827321b34082903477fd04876edb7552)
Pydantic was updated from v1 to v2 in this commit which caused this
breaking change

# What does this PR do?
Part of #1857 

This won't fix the Validation error with the example, but it will
correctly supply user with a proper error rather than a 5xx code.

Signed-off-by: Kevin <kpostlet@redhat.com>
2025-04-21 11:50:12 -07:00
Peter Double
86c6f1f112
fix: FastAPI built-in paths bypass custom routing (Docs) and update r… (#1841)
## What does this PR do?

This PR improves the server's request routing logic by ensuring built-in
FastAPI paths such as `/docs`, `/redoc`, `/openapi.json`,
`/favicon.ico`, and `/static` bypass the custom `TracingMiddleware`.
This prevents unnecessary tracing logic for documentation and static
file requests, ensuring better performance and cleaner logs.

Additionally, it adds proper metadata (`title`, `description`, and
`version`) to the FastAPI application initialization and updates the
requirements document accordingly.

[//]: # (Closes #1822 )

---

## Test Plan

- Ran the server locally with `uvicorn` using the provided `run.yaml`
config
- Verified that:
- FastAPI docs (`/docs`, `/redoc`) load correctly without triggering the
custom tracing middleware
  - All other routes still go through the middleware and trace logic
  - Application metadata appears as expected in the OpenAPI docs

To reproduce:
1. Start the server with `python server.py --template <template-name>`
2. Navigate to `/docs` and `/redoc`
3. Confirm that no extra trace headers are added for those routes
4. Confirm other API endpoints behave as expected and include
`x-trace-id` in the response headers

[//]: # (## Documentation)

---

Froze the requirements file to include many of the other libraries that
have been added in the past few releases to make install easier.

---------

Co-authored-by: Sébastien Han <seb@redhat.com>
2025-04-14 13:28:25 -04:00
Sébastien Han
69554158fa
feat: add health to all providers through providers endpoint (#1418)
The `/v1/providers` now reports the health status of each
provider when implemented.

```
curl -L http://127.0.0.1:8321/v1/providers|jq
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  4072  100  4072    0     0   246k      0 --:--:-- --:--:-- --:--:--  248k
{
  "data": [
    {
      "api": "inference",
      "provider_id": "ollama",
      "provider_type": "remote::ollama",
      "config": {
        "url": "http://localhost:11434"
      },
      "health": {
        "status": "OK"
      }
    },
    {
      "api": "vector_io",
      "provider_id": "faiss",
      "provider_type": "inline::faiss",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/faiss_store.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "safety",
      "provider_id": "llama-guard",
      "provider_type": "inline::llama-guard",
      "config": {
        "excluded_categories": []
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "agents",
      "provider_id": "meta-reference",
      "provider_type": "inline::meta-reference",
      "config": {
        "persistence_store": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/agents_store.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "telemetry",
      "provider_id": "meta-reference",
      "provider_type": "inline::meta-reference",
      "config": {
        "service_name": "llama-stack",
        "sinks": "console,sqlite",
        "sqlite_db_path": "/Users/leseb/.llama/distributions/ollama/trace_store.db"
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "eval",
      "provider_id": "meta-reference",
      "provider_type": "inline::meta-reference",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/meta_reference_eval.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "datasetio",
      "provider_id": "huggingface",
      "provider_type": "remote::huggingface",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/huggingface_datasetio.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "datasetio",
      "provider_id": "localfs",
      "provider_type": "inline::localfs",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/localfs_datasetio.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "scoring",
      "provider_id": "basic",
      "provider_type": "inline::basic",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "scoring",
      "provider_id": "llm-as-judge",
      "provider_type": "inline::llm-as-judge",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "scoring",
      "provider_id": "braintrust",
      "provider_type": "inline::braintrust",
      "config": {
        "openai_api_key": "********"
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "brave-search",
      "provider_type": "remote::brave-search",
      "config": {
        "api_key": "********",
        "max_results": 3
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "tavily-search",
      "provider_type": "remote::tavily-search",
      "config": {
        "api_key": "********",
        "max_results": 3
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "code-interpreter",
      "provider_type": "inline::code-interpreter",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "rag-runtime",
      "provider_type": "inline::rag-runtime",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "model-context-protocol",
      "provider_type": "remote::model-context-protocol",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "wolfram-alpha",
      "provider_type": "remote::wolfram-alpha",
      "config": {
        "api_key": "********"
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    }
  ]
}
```

Per providers too:

```
curl -L http://127.0.0.1:8321/v1/providers/ollama
{"api":"inference","provider_id":"ollama","provider_type":"remote::ollama","config":{"url":"http://localhost:11434"},"health":{"status":"OK"}}
```

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-14 11:59:36 +02:00
Ihar Hrachyshka
18bac27d4e
fix: Use CONDA_DEFAULT_ENV presence as a flag to use conda mode (#1555)
# What does this PR do?

This is the second attempt to switch to system packages by default. Now
with a hack to detect conda environment - in which case conda image-type
is used.

Note: Conda will only be used when --image-name is unset *and*
CONDA_DEFAULT_ENV is set. This means that users without conda will
correctly fall back to using system packages when no --image-* arguments
are passed at all.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

Uses virtualenv:

```
$ llama stack build --template ollama --image-type venv
$ llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Using virtual environment: /home/ec2-user/src/llama-stack/schedule/.local
[...]
```

Uses system packages (virtualenv already initialized):

```
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
INFO     2025-03-27 20:46:22,882 llama_stack.cli.stack.run:142 server: No image type or image name provided. Assuming environment packages.
[...]
```

Attempt to run from environment packages without necessary packages
installed:
```
$ python -m venv barebones
$ . ./barebones/bin/activate
$ pip install -e . # to install llama command
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
ModuleNotFoundError: No module named 'fastapi'
```

^ failed as expected because the environment doesn't have necessary
packages installed.

Now install some packages in the new environment:

```
$ pip install fastapi opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp aiosqlite ollama openai datasets faiss-cpu mcp autoevals
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
```

Now see if setting CONDA_DEFAULT_ENV will change what happens by
default:

```
$ export CONDA_DEFAULT_ENV=base
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Using conda environment: base
Conda environment base does not exist.
[...]
```

---------

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-03-27 17:13:22 -04:00
ehhuang
06788643b3
feat(telemetry): clean up spans (#1760) 2025-03-21 20:05:11 -07:00
Dinesh Yeduguru
5eb15684b4
feat: use same trace ids in stack and otel (#1759)
# What does this PR do?
1) Uses otel compatible id generation for stack
2) Stack starts returning trace id info in the header of response
3) We inject the same trace id that we have into otel in order to force
it to use our trace ids.

## Test Plan
```
 curl -i --request POST \
  --url http://localhost:8321/v1/inference/chat-completion \
  --header 'content-type: application/json' \
  --data '{
  "model_id": "meta-llama/Llama-3.1-70B-Instruct",
  "messages": [
    {
      "role": "user",
      "content": {
        "type": "text",
        "text": "where do humans live"
      }
    }
  ],
  "stream": false
}'
HTTP/1.1 200 OK
date: Fri, 21 Mar 2025 21:51:19 GMT
server: uvicorn
content-length: 1712
content-type: application/json
x-trace-id: 595101ede31ece116ebe35b26d67e8cf

{"metrics":[{"metric":"prompt_tokens","value":10,"unit":null},{"metric":"completion_tokens","value":320,"unit":null},{"metric":"total_tokens","value":330,"unit":null}],"completion_message":{"role":"assistant","content":"Humans live on the planet Earth, specifically on its landmasses and in its oceans. Here's a breakdown of where humans live:\n\n1. **Continents:** Humans inhabit all seven continents:\n\t* Africa\n\t* Antarctica ( temporary residents, mostly scientists and researchers)\n\t* Asia\n\t* Australia\n\t* Europe\n\t* North America\n\t* South America\n2. **Countries:** There are 196 countries recognized by the United Nations, and humans live in almost all of them.\n3. **Cities and towns:** Many humans live in urban areas, such as cities and towns, which are often located near coastlines, rivers, or other bodies of water.\n4. **Rural areas:** Some humans live in rural areas, such as villages, farms, and countryside.\n5. **Islands:** Humans inhabit many islands around the world, including tropical islands, island nations, and islands in the Arctic and Antarctic regions.\n6. **Underwater habitats:** A few humans live in underwater habitats, such as research stations and submarines.\n7. **Space:** A small number of humans have lived in space, including astronauts on the International Space Station and those who have visited the Moon.\n\nIn terms of specific environments, humans live in a wide range of ecosystems, including:\n\n* Deserts\n* Forests\n* Grasslands\n* Mountains\n* Oceans\n* Rivers\n* Tundras\n* Wetlands\n\nOverall, humans are incredibly adaptable and can be found living in almost every corner of the globe.","stop_reason":"end_of_turn","tool_calls":[]},"logprobs":null}
```

Same trace id in Jaeger and sqlite:

![Screenshot 2025-03-21 at 2 51
53 PM](https://github.com/user-attachments/assets/38cc04b0-568c-4b9d-bccd-d3b90e581c27)
![Screenshot 2025-03-21 at 2 52
38 PM](https://github.com/user-attachments/assets/722383ad-6305-4020-8a1c-6cfdf381c25f)
2025-03-21 15:41:26 -07:00
ehhuang
f76550ce4e
feat(telemetry): normalize path (#1739)
# What does this PR do?
This will prevent 'operations' from being flooded 
<img width="401" alt="image"
src="https://github.com/user-attachments/assets/c95e0eeb-4a10-4003-88df-9bb6d0a548cd"
/>


Before
<img width="1049" alt="image"
src="https://github.com/user-attachments/assets/157fb614-e007-4cb3-a571-226e50525bfa"
/>


## Test Plan
After
<img width="811" alt="image"
src="https://github.com/user-attachments/assets/b2b10344-1d73-44e5-abee-a9f039090963"
/>
2025-03-21 10:17:43 -07:00
Dinesh Yeduguru
86f617a197
fix: tracing middleware to not start for lifespan events (#1730)
# What does this PR do?
Tracing middleware should not start tracing for lifespan events.
Lifespan event happens at server startup and shutdown and if we start
tracing for them, we will have an active trace for the lifetime of the
server, which messes up with regular tracing since we always expect the
traces to be never nested.

We started hitting this issue since
https://github.com/meta-llama/llama-stack/pull/1495.

## Test Plan
* llama stack run ~/.llama/distributions/fireworks/fireworks-run.yaml
* Verify in sqlite store that the trace now has non null span id
![Screenshot 2025-03-20 at 1 49
47 PM](https://github.com/user-attachments/assets/d77354a7-d5f1-4b53-a946-6adbd7a4f772)
2025-03-20 14:22:19 -07:00
Ashwin Bharambe
01a25d9744
feat(server): add attribute based access control for resources (#1703)
This PR introduces a way to implement Attribute Based Access Control
(ABAC) for the Llama Stack server.

The rough design is:
- https://github.com/meta-llama/llama-stack/pull/1626 added a way for
the Llama Stack server to query an authenticator
- We build upon that and expect "access attributes" as part of the
response. These attributes indicate the scopes available for the
request.
- We use these attributes to perform access control for registered
resources as well as for constructing the default access control
policies for newly created resources.
- By default, if you support authentication but don't return access
attributes, we will add a unique namespace pointing to the API_KEY. That
way, all resources by default will be scoped to API_KEYs.

An important aspect of this design is that Llama Stack stays out of the
business of credential management or the CRUD for attributes. How you
manage your namespaces or projects is entirely up to you. The design
only implements access control checks for the metadata / book-keeping
information that the Stack tracks.

### Limitations

- Currently, read vs. write vs. admin permissions aren't made explicit,
but this can be easily extended by adding appropriate attributes to the
`AccessAttributes` data structure.
- This design does not apply to agent instances since they are not
considered resources the Stack knows about. Agent instances are
completely within the scope of the Agents API provider.

### Test Plan

Added unit tests, existing integration tests
2025-03-19 21:28:52 -07:00
Charlie Doern
1f04ca357b
fix: telemetry logger (#1714)
# What does this PR do?

currently if you have a run yaml without temeletry the following error
is hit:

TypeError: TelemetryAdapter.__init__() missing 1 required positional
argument: 'deps'

this is because the TelemetryAdapter requires a deps arg to be passed.
Pass {} to avoid errors.

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-03-19 20:26:13 -07:00
Ashwin Bharambe
5b39d5a76a
feat(auth, rfc): Add support for Bearer (api_key) Authentication (#1626)
This PR adds support (or is a proposal for) for supporting API KEY
authentication on the Llama Stack server end. `llama-stack-client`
already supports accepting an api_key parameter and passes it down
through every request as an `Authentication: ` header.

Currently, Llama Stack does not propose APIs for handling authentication
or authorization for resources of any kind. Given that, and the fact
that any deployment will typically have _some_ authentication system
present, we simply adopt a delegation mechanism: delegate to an HTTPS
endpoint performing key management / authentication.

It is configured via: 
```yaml
server: 
   auth:
     endpoint: <...>
```

in the run.yaml configuration.


## How It Works

When authentication is enabled:

1. Every API request must include an `Authorization: Bearer <token>`
header
2. The server will send a _POST_ validation request to the configured
endpoint with the following payload:
   ```json
   {
     "api_key": "<token>",
     "request": {
       "path": "/api/path",
       "headers": { "header1": "value1", ... },
       "params": { "param1": "value1", ... }
     }
   }
   ```
3. If the authentication endpoint returns a 200 status code, the request
is allowed to proceed
4. If the authentication endpoint returns any other status code, a 401
Unauthorized response is returned

## Test Plan

Unit tests
2025-03-18 16:24:18 -07:00
Charlie Doern
78d4872c0c
feat: add support for logging config in the run.yaml (#1408)
# What does this PR do?

a user should be able to store a static logging configuration outside of
their environment. This would make sense to store in the run yaml given
that we store other things like server configuration in there.

The environment variable settings override the config settings if both
are available.

The format in the config looks like this:

```
logging_config:
  category_levels:
    VALID_CATEGORY: VALID_STRING_LOG_LEVEL
```

any specified category out of the following:

`core | server | router | inference | agents | safety | eval | tools |
client`

combined with any of the following log levels:

`debug | info | warning | error | critical`

can be placed in the category_levels list in order to achieve the
desired log level

## Test Plan

Test locally with a run config like the following:

```
version: '2'
image_name: ollama
logging_config:
  category_levels:
      server: debug
apis:
...
```

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-03-14 12:36:25 -07:00
Charlie Doern
a062723d03
feat: add provider API for listing and inspecting provider info (#1429)
# What does this PR do?

currently the `inspect` API for providers is really a `list` API. Create
a new `providers` API which has a GET `providers/{provider_id}` inspect
API
which returns "user friendly" configuration to the end user. Also add a
GET `/providers` endpoint which returns the list of providers as
`inspect/providers` does today.

This API follows CRUD and is more intuitive/RESTful.

This work is part of the RFC at
https://github.com/meta-llama/llama-stack/pull/1359

sensitive fields are redacted using `redact_sensetive_fields` on the
server side before returning a response:

<img width="456" alt="Screenshot 2025-03-13 at 4 40 21 PM"
src="https://github.com/user-attachments/assets/9465c221-2a26-42f8-a08a-6ac4a9fecce8"
/>


## Test Plan

using https://github.com/meta-llama/llama-stack-client-python/pull/181 a
user is able to to run the following:

`llama stack build --template ollama --image-type venv`
`llama stack run --image-type venv
~/.llama/distributions/ollama/ollama-run.yaml`
`llama-stack-client providers inspect ollama`

<img width="378" alt="Screenshot 2025-03-13 at 4 39 35 PM"
src="https://github.com/user-attachments/assets/8273d05d-8bc3-44c6-9e4b-ef95e48d5466"
/>


also, was able to run the new test_list integration test locally with
ollama:

<img width="1509" alt="Screenshot 2025-03-13 at 11 03 40 AM"
src="https://github.com/user-attachments/assets/9b9db166-f02f-45b0-86a4-306d85149bc8"
/>

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-03-13 15:07:21 -07:00
Dinesh Yeduguru
58d08d100e
feat: Add back inference metrics and preserve context variables across asyncio boundary (#1552)
# What does this PR do?
This PR adds back the changes in #1300  which were reverted in  #1476 .

It also adds logic to preserve context variables across asyncio
boundary. this is needed with the library client since the async
generator logic yields control to code outside the event loop, and on
resuming, does not have the same context as before and this requires
preserving the context vars.

address #1477 
## Test Plan


```
 curl --request POST \
  --url http://localhost:8321/v1/inference/chat-completion \
  --header 'content-type: application/json' \
  --data '{
  "model_id": "meta-llama/Llama-3.1-70B-Instruct",
  "messages": [
    {
      "role": "user",
      "content": {
        "type": "text",
        "text": "where do humans live"
      }
    }
  ],
  "stream": false
}' | jq .

{
  "metrics": [
    {
      "trace_id": "kCZwO3tyQC-FuAGb",
      "span_id": "bsP_5a5O",
      "timestamp": "2025-03-11T16:47:38.549084Z",
      "attributes": {
        "model_id": "meta-llama/Llama-3.1-70B-Instruct",
        "provider_id": "fireworks"
      },
      "type": "metric",
      "metric": "prompt_tokens",
      "value": 10,
      "unit": "tokens"
    },
    {
      "trace_id": "kCZwO3tyQC-FuAGb",
      "span_id": "bsP_5a5O",
      "timestamp": "2025-03-11T16:47:38.549449Z",
      "attributes": {
        "model_id": "meta-llama/Llama-3.1-70B-Instruct",
        "provider_id": "fireworks"
      },
      "type": "metric",
      "metric": "completion_tokens",
      "value": 369,
      "unit": "tokens"
    },
    {
      "trace_id": "kCZwO3tyQC-FuAGb",
      "span_id": "bsP_5a5O",
      "timestamp": "2025-03-11T16:47:38.549457Z",
      "attributes": {
        "model_id": "meta-llama/Llama-3.1-70B-Instruct",
        "provider_id": "fireworks"
      },
      "type": "metric",
      "metric": "total_tokens",
      "value": 379,
      "unit": "tokens"
    }
  ],
  "completion_message": {
    "role": "assistant",
    "content": "Humans live on the planet Earth, specifically on its landmasses and in its oceans. Here's a breakdown of where humans live:\n\n1. **Continents:** Humans inhabit all seven continents:\n\t* Africa\n\t* Antarctica ( temporary residents, mostly scientists and researchers)\n\t* Asia\n\t* Australia\n\t* Europe\n\t* North America\n\t* South America\n2. **Countries:** There are 196 countries recognized by the United Nations, and humans live in almost all of them.\n3. **Cities and towns:** Many humans live in urban areas, such as cities and towns, which are often located near coastlines, rivers, or other bodies of water.\n4. **Rural areas:** Some humans live in rural areas, such as villages, farms, and countryside.\n5. **Islands:** Humans inhabit many islands around the world, including those in the Pacific, Indian, and Atlantic Oceans.\n6. **Mountains and highlands:** Humans live in mountainous regions, such as the Himalayas, the Andes, and the Rocky Mountains.\n7. **Deserts:** Some humans live in desert regions, such as the Sahara, the Mojave, and the Atacama.\n8. **Coastal areas:** Many humans live in coastal areas, such as beaches, ports, and coastal cities.\n9. **Underwater habitats:** A few humans live in underwater habitats, such as research stations and submarines.\n10. **Space:** A small number of humans have lived in space, including astronauts on the International Space Station and those who have visited the Moon.\n\nOverall, humans can be found living in almost every environment on Earth, from the frozen tundra to the hottest deserts, and from the highest mountains to the deepest oceans.",
    "stop_reason": "end_of_turn",
    "tool_calls": []
  },
  "logprobs": null
}

```

Orignal repro no longer showing any error:
```
LLAMA_STACK_DISABLE_VERSION_CHECK=true llama stack run ~/.llama/distributions/fireworks/fireworks-run.yaml
python -m examples.agents.e2e_loop_with_client_tools localhost 8321
```

client logs:
https://gist.github.com/dineshyv/047c7e87b18a5792aa660e311ea53166
server logs:
https://gist.github.com/dineshyv/97a2174099619e9916c7c490be26e559
2025-03-12 12:01:03 -07:00
Charlie Doern
4eee349acd
fix: respect log_level in uvicorn and third party libs (#1524)
# What does this PR do?

uvicorn has a `log_level` arg in uvicorn.run, pass in the effective
level set by the logger.

Additionally, third party libraries like httpx are using our logging
format, but not honoring our log level.

This seems unintended, so loop through all items in the loggerDict and
apply the same log level as what we have set.


## Test Plan

before:

```
llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
Environment variable LLAMA_STACK_LOGGING found: all=warn
Using virtual environment: /Users/charliedoern/projects/Documents/llama-stack/venv
+ python -m llama_stack.distribution.server.server --yaml-config /Users/charliedoern/.llama/distributions/ollama/ollama-run.yaml --port 8321
Environment variable LLAMA_STACK_LOGGING found: all=warn
WARNING  2025-03-10 16:05:49,706 root:71 uncategorized: Warning: `bwrap` is not available. Code interpreter tool will
         not work correctly.
INFO     2025-03-10 16:05:49,916 datasets:54 uncategorized: PyTorch version 2.5.1 available.
INFO     2025-03-10 16:05:50,010 httpx:1740 uncategorized: HTTP Request: GET http://localhost:11434/api/ps "HTTP/1.1 200
         OK"
INFO     2025-03-10 16:05:50,297 httpx:1740 uncategorized: HTTP Request: POST http://localhost:11434/api/pull "HTTP/1.1
         200 OK"
INFO     2025-03-10 16:05:50,314 httpx:1740 uncategorized: HTTP Request: GET http://localhost:11434/api/tags "HTTP/1.1
         200 OK"
INFO:     Started server process [89663]
INFO:     Waiting for application startup.
INFO:     ASGI 'lifespan' protocol appears unsupported.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
```

after:

```
llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
Environment variable LLAMA_STACK_LOGGING found: all=warn
Using virtual environment: /Users/charliedoern/projects/Documents/llama-stack/venv
+ python -m llama_stack.distribution.server.server --yaml-config /Users/charliedoern/.llama/distributions/ollama/ollama-run.yaml --port 8321
Environment variable LLAMA_STACK_LOGGING found: all=warn
WARNING  2025-03-10 16:05:20,429 root:71 uncategorized: Warning: `bwrap` is not available. Code interpreter tool will
         not work correctly.
INFO     2025-03-10 16:05:20,639 datasets:54 uncategorized: PyTorch version 2.5.1 available.
```

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-03-12 11:07:28 -07:00
Ihar Hrachyshka
aca82df7ed
fix: Multiple fixes for server shutdown (fix lifespan handling; fix handling CancelledError when raised by provider; let uvicorn handle signals) (#1495)
# What does this PR do?

If implementation raises CancelledError (e.g. when it runs its own async
loop for jobs), the main server shutdown handler gets confused and
doesn't attempt to shut down the main loop tasks.

While at it, also fixing the following failure when this happens:

```
UnboundLocalError: cannot access local variable 'loop' where it is not
associated with a value
```

Shutdown handlers were not running because lifespan logic was broken
since ~Oct 2024. Fixed that too and enforcing `lifespan` now (making
sure server will crash when it fails to interact with app through
middleware).

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

Spotted while working on
https://github.com/meta-llama/llama-stack/pull/1437

One way to trigger it without the PR above is to add `raise
CancelledError` in
any of the running providers' `shutdown` methods; then `kill -INT <pid>`
the
server process.

Validated this with the following test patch:

```
diff --git a/llama_stack/distribution/server/server.py b/llama_stack/distribution/server/server.py
index b85c463a..10dad83e 100644
--- a/llama_stack/distribution/server/server.py
+++ b/llama_stack/distribution/server/server.py
@@ -174,6 +174,7 @@ def handle_signal(app, signum, _) -> None:
         except asyncio.CancelledError:
             pass
         finally:
+            logger.info("Stopping event loop")
             loop.stop()
 
     loop = asyncio.get_running_loop()
diff --git a/llama_stack/providers/inline/post_training/torchtune/post_training.py b/llama_stack/providers/inline/post_training/torchtune/post_training.py
index b837362d..163f43d8 100644
--- a/llama_stack/providers/inline/post_training/torchtune/post_training.py
+++ b/llama_stack/providers/inline/post_training/torchtune/post_training.py
@@ -3,6 +3,7 @@
 #
 # This source code is licensed under the terms described in the LICENSE file in
 # the root directory of this source tree.
+import asyncio
 from datetime import datetime
 from typing import Any, Dict, Optional
 
@@ -43,6 +44,9 @@ class TorchtunePostTrainingImpl:
         self.jobs = {}
         self.checkpoints_dict = {}
 
+    async def shutdown(self) -> None:
+        raise asyncio.CancelledError("Shutdown")
+
     async def supervised_fine_tune(
         self,
         job_uuid: str,
```

Without the fix:

```
INFO:     Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
INFO:     Shutting down
INFO:     Finished server process [52099]
INFO     2025-03-07 23:25:33,548 __main__:143 server: Received signal SIGINT (2). Exiting gracefully...
INFO     2025-03-07 23:25:33,550 __main__:150 server: Shutting down DatasetsRoutingTable
INFO     2025-03-07 23:25:33,551 __main__:177 server: Stopping event loop
ERROR    2025-03-07 23:25:33,552 asyncio:1785 uncategorized: unhandled exception during asyncio.run() shutdown
         task: <Task finished name='Task-12' coro=<handle_signal.<locals>.shutdown() done, defined at
         /home/ec2-user/src/llama-stack/schedule/llama_stack/distribution/server/server.py:145>
         exception=UnboundLocalError("cannot access local variable 'loop' where it is not associated with a value")>
         ╭───────────────────────────────────── Traceback (most recent call last) ─────────────────────────────────────╮
         │ /home/ec2-user/src/llama-stack/schedule/llama_stack/distribution/server/server.py:178 in shutdown           │
         │                                                                                                             │
         │   175 │   │   │   pass                                                                                      │
         │   176 │   │   finally:                                                                                      │
         │   177 │   │   │   logger.info("Stopping event loop")                                                        │
         │ ❱ 178 │   │   │   loop.stop()                                                                               │
         │   179 │                                                                                                     │
         │   180 │   loop = asyncio.get_running_loop()                                                                 │
         │   181 │   loop.create_task(shutdown())                                                                      │
         ╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
         UnboundLocalError: cannot access local variable 'loop' where it is not associated with a value

```

With the fix, now seeing the following messages when the server is
killed:

```
INFO:     Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
INFO:     Shutting down
INFO:     Finished server process [50836]
INFO     2025-03-07 23:20:35,182 __main__:143 server: Received signal SIGINT (2). Exiting gracefully...
INFO     2025-03-07 23:20:35,184 __main__:149 server: Shutting down DatasetsRoutingTable
ERROR    2025-03-07 23:20:35,185 __main__:158 server: Failed to shutdown DatasetsRoutingTable: {CancelledError()}
         ╭───────────────────────────────────── Traceback (most recent call last) ─────────────────────────────────────╮
         │ /usr/lib64/python3.11/asyncio/tasks.py:476 in wait_for                                                      │
         │                                                                                                             │
         │   473 │   try:                                                                                              │
         │   474 │   │   # wait until the future completes or the timeout                                              │
         │   475 │   │   try:                                                                                          │
         │ ❱ 476 │   │   │   await waiter                                                                              │
         │   477 │   │   except exceptions.CancelledError:                                                             │
         │   478 │   │   │   if fut.done():                                                                            │
         │   479 │   │   │   │   return fut.result()                                                                   │
         ╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
         CancelledError

         During handling of the above exception, another exception occurred:

         ╭───────────────────────────────────── Traceback (most recent call last) ─────────────────────────────────────╮
         │ /home/ec2-user/src/llama-stack/schedule/llama_stack/distribution/server/server.py:152 in shutdown           │
         │                                                                                                             │
         │   149 │   │   │   logger.info("Shutting down %s", impl_name)                                                │
         │   150 │   │   │   try:                                                                                      │
         │   151 │   │   │   │   if hasattr(impl, "shutdown"):                                                         │
         │ ❱ 152 │   │   │   │   │   await asyncio.wait_for(impl.shutdown(), timeout=5)                                │
         │   153 │   │   │   │   else:                                                                                 │
         │   154 │   │   │   │   │   logger.warning("No shutdown method for %s", impl_name)                            │
         │   155 │   │   │   except asyncio.TimeoutError:                                                              │
         │                                                                                                             │
         │ /usr/lib64/python3.11/asyncio/tasks.py:479 in wait_for                                                      │
         │                                                                                                             │
         │   476 │   │   │   await waiter                                                                              │
         │   477 │   │   except exceptions.CancelledError:                                                             │
         │   478 │   │   │   if fut.done():                                                                            │
         │ ❱ 479 │   │   │   │   return fut.result()                                                                   │
         │   480 │   │   │   else:                                                                                     │
         │   481 │   │   │   │   fut.remove_done_callback(cb)                                                          │
         │   482 │   │   │   │   # We must ensure that the task is not running                                         │
         │                                                                                                             │
         │ /home/ec2-user/src/llama-stack/schedule/llama_stack/distribution/routers/routing_tables.py:131 in shutdown  │
         │                                                                                                             │
         │   128 │   │   │   elif api == Api.tool_runtime:                                                             │
         │   129 │   │   │   │   p.tool_store = self                                                                   │
         │   130 │                                                                                                     │
         │ ❱ 131 │   async def shutdown(self) -> None:                                                                 │
         │   132 │   │   for p in self.impls_by_provider_id.values():                                                  │
         │   133 │   │   │   await p.shutdown()                                                                        │
         │   134                                                                                                       │
         ╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
         CancelledError
INFO     2025-03-07 23:20:35,295 __main__:149 server: Shutting down DatasetIORouter
INFO     2025-03-07 23:20:35,296 __main__:149 server: Shutting down ScoringFunctionsRoutingTable
INFO     2025-03-07 23:20:35,297 __main__:149 server: Shutting down ScoringRouter
INFO     2025-03-07 23:20:35,298 __main__:149 server: Shutting down ModelsRoutingTable
INFO     2025-03-07 23:20:35,299 __main__:149 server: Shutting down InferenceRouter
INFO     2025-03-07 23:20:35,300 __main__:149 server: Shutting down ShieldsRoutingTable
INFO     2025-03-07 23:20:35,300 __main__:149 server: Shutting down SafetyRouter
INFO     2025-03-07 23:20:35,301 __main__:149 server: Shutting down VectorDBsRoutingTable
INFO     2025-03-07 23:20:35,302 __main__:149 server: Shutting down VectorIORouter
INFO     2025-03-07 23:20:35,303 __main__:149 server: Shutting down ToolGroupsRoutingTable
INFO     2025-03-07 23:20:35,304 __main__:149 server: Shutting down ToolRuntimeRouter
INFO     2025-03-07 23:20:35,304 __main__:149 server: Shutting down MetaReferenceAgentsImpl
INFO     2025-03-07 23:20:35,305 __main__:149 server: Shutting down TelemetryAdapter
INFO     2025-03-07 23:20:35,306 __main__:149 server: Shutting down TorchtunePostTrainingImpl
ERROR    2025-03-07 23:20:35,307 __main__:158 server: Failed to shutdown TorchtunePostTrainingImpl:
         {CancelledError('Shutdown')}
         ╭───────────────────────────────────── Traceback (most recent call last) ─────────────────────────────────────╮
         │ /home/ec2-user/src/llama-stack/schedule/llama_stack/distribution/server/server.py:152 in shutdown           │
         │                                                                                                             │
         │   149 │   │   │   logger.info("Shutting down %s", impl_name)                                                │
         │   150 │   │   │   try:                                                                                      │
         │   151 │   │   │   │   if hasattr(impl, "shutdown"):                                                         │
         │ ❱ 152 │   │   │   │   │   await asyncio.wait_for(impl.shutdown(), timeout=5)                                │
         │   153 │   │   │   │   else:                                                                                 │
         │   154 │   │   │   │   │   logger.warning("No shutdown method for %s", impl_name)                            │
         │   155 │   │   │   except asyncio.TimeoutError:                                                              │
         │                                                                                                             │
         │ /usr/lib64/python3.11/asyncio/tasks.py:489 in wait_for                                                      │
         │                                                                                                             │
         │   486 │   │   │   │   raise                                                                                 │
         │   487 │   │                                                                                                 │
         │   488 │   │   if fut.done():                                                                                │
         │ ❱ 489 │   │   │   return fut.result()                                                                       │
         │   490 │   │   else:                                                                                         │
         │   491 │   │   │   fut.remove_done_callback(cb)                                                              │
         │   492 │   │   │   # We must ensure that the task is not running                                             │
         │                                                                                                             │
         │ /home/ec2-user/src/llama-stack/schedule/llama_stack/providers/inline/post_training/torchtune/post_training. │
         │ py:48 in shutdown                                                                                           │
         │                                                                                                             │
         │    45 │   │   self.checkpoints_dict = {}                                                                    │
         │    46 │                                                                                                     │
         │    47 │   async def shutdown(self) -> None:                                                                 │
         │ ❱  48 │   │   raise asyncio.CancelledError("Shutdown")                                                      │
         │    49 │                                                                                                     │
         │    50 │   async def supervised_fine_tune(                                                                   │
         │    51 │   │   self,                                                                                         │
         ╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
         CancelledError: Shutdown
INFO     2025-03-07 23:20:35,352 __main__:149 server: Shutting down BenchmarksRoutingTable
INFO     2025-03-07 23:20:35,353 __main__:149 server: Shutting down EvalRouter
INFO     2025-03-07 23:20:35,354 __main__:149 server: Shutting down DistributionInspectImpl
INFO     2025-03-07 23:20:35,355 __main__:177 server: Stopping event loop
Traceback (most recent call last):
  File "<frozen runpy>", line 198, in _run_module_as_main
  File "<frozen runpy>", line 88, in _run_code
  File "/home/ec2-user/src/llama-stack/schedule/llama_stack/distribution/server/server.py", line 488, in <module>
    main()
  File "/home/ec2-user/src/llama-stack/schedule/llama_stack/distribution/server/server.py", line 476, in main
    uvicorn.run(**uvicorn_config)
  File "/home/ec2-user/src/llama-stack/schedule/venv/lib64/python3.11/site-packages/uvicorn/main.py", line 579, in run
    server.run()
  File "/home/ec2-user/src/llama-stack/schedule/venv/lib64/python3.11/site-packages/uvicorn/server.py", line 66, in run
    return asyncio.run(self.serve(sockets=sockets))
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/lib64/python3.11/asyncio/runners.py", line 189, in run
    with Runner(debug=debug) as runner:
  File "/usr/lib64/python3.11/asyncio/runners.py", line 63, in __exit__
    self.close()
  File "/usr/lib64/python3.11/asyncio/runners.py", line 71, in close
    _cancel_all_tasks(loop)
  File "/usr/lib64/python3.11/asyncio/runners.py", line 201, in _cancel_all_tasks
    loop.run_until_complete(tasks.gather(*to_cancel, return_exceptions=True))
  File "/usr/lib64/python3.11/asyncio/base_events.py", line 652, in run_until_complete
    raise RuntimeError('Event loop stopped before Future completed.')
RuntimeError: Event loop stopped before Future completed.
++ error_handler 104
++ echo 'Error occurred in script at line: 104'
Error occurred in script at line: 104
++ exit 1
```

With all patches included, the shutdown now looks as follows:

```
$ kill -INT $(ps ax | grep  llama_stack.distribution.server.server | grep -v nvim | awk -e '{print $1}' | sort | head -n 1)
```

```
20:56:09.308 [START]
INFO:     Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
INFO:     Shutting down
INFO:     Waiting for application shutdown.
INFO     2025-03-10 20:56:43,961 __main__:140 server: Shutting down
INFO     2025-03-10 20:56:43,962 __main__:124 server: Shutting down DatasetsRoutingTable
INFO     2025-03-10 20:56:43,964 __main__:124 server: Shutting down DatasetIORouter
INFO     2025-03-10 20:56:43,965 __main__:124 server: Shutting down ScoringFunctionsRoutingTable
INFO     2025-03-10 20:56:43,966 __main__:124 server: Shutting down ScoringRouter
INFO     2025-03-10 20:56:43,967 __main__:124 server: Shutting down ModelsRoutingTable
INFO     2025-03-10 20:56:43,968 __main__:124 server: Shutting down InferenceRouter
INFO     2025-03-10 20:56:43,969 __main__:124 server: Shutting down ShieldsRoutingTable
INFO     2025-03-10 20:56:43,971 __main__:124 server: Shutting down SafetyRouter
INFO     2025-03-10 20:56:43,972 __main__:124 server: Shutting down VectorDBsRoutingTable
INFO     2025-03-10 20:56:43,973 __main__:124 server: Shutting down VectorIORouter
INFO     2025-03-10 20:56:43,974 __main__:124 server: Shutting down ToolGroupsRoutingTable
INFO     2025-03-10 20:56:43,975 __main__:124 server: Shutting down ToolRuntimeRouter
INFO     2025-03-10 20:56:43,976 __main__:124 server: Shutting down MetaReferenceAgentsImpl
INFO     2025-03-10 20:56:43,977 __main__:124 server: Shutting down TelemetryAdapter
INFO     2025-03-10 20:56:43,978 __main__:124 server: Shutting down TorchtunePostTrainingImpl
WARNING  2025-03-10 20:56:43,979 __main__:129 server: No shutdown method for TorchtunePostTrainingImpl
INFO     2025-03-10 20:56:43,979 __main__:124 server: Shutting down BenchmarksRoutingTable
INFO     2025-03-10 20:56:43,980 __main__:124 server: Shutting down EvalRouter
INFO     2025-03-10 20:56:43,981 __main__:124 server: Shutting down DistributionInspectImpl
INFO:     Application shutdown complete.
INFO:     Finished server process [33862]
```

[//]: # (## Documentation)

---------

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-03-11 10:30:55 -07:00
Ashwin Bharambe
e13c92f269
revert: feat(server): Use system packages for execution (#1551)
Reverts meta-llama/llama-stack#1252

The above PR breaks the following invocation:
```bash
llama stack run ~/.llama/distributions/together/together-run.yaml
```
2025-03-11 09:58:25 -07:00
Sébastien Han
21e39633d8
feat(server): Use system packages for execution (#1252)
# What does this PR do?

Users prefer to rely on the main CLI rather than invoking the server
through a Python module. Users interact with a high-level CLI rather
than needing to know internal module structures.

Now, when running llama stack run <path-to-config>, the server will
attempt to use the system package or a virtual environment if one is
active.

This also eliminates the current process dependency chain when running
from a virtual environment:

-> llama stack run
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; -> start_env.sh

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
-> python -m server...

Signed-off-by: Sébastien Han <seb@redhat.com>

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

Run:

```
ollama run llama3.2:3b-instruct-fp16 --keepalive=2m &
llama stack run ./llama_stack/templates/ollama/run.yaml --disable-ipv6
```

Notice that the server starts and shutdowns normally.

[//]: # (## Documentation)

---------

Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-03-10 16:01:03 -07:00
ehhuang
0e3c0cf8de
fix: server logging (#1521)
Summary:

Test Plan:

ERROR 2025-03-10 10:53:00,804 __main__:239 server: Error executing
endpoint route='/v1/inference/chat-completion'
         method='post'
2025-03-10 15:25:23 -07:00
Ashwin Bharambe
205661bc78
fix: Use re-entrancy and concurrency safe context managers for provider data (#1498)
Concurrent requests should not trample (or reuse) each others' provider
data. Provider data should be scoped to each request.

## Test Plan

Set the uvicorn server to have a single worker process + thread by
updating the config:
```python
    uvicorn_config = {
        ...
        "workers": 1,
        "loop": "asyncio",
    }
```

Then perform the following steps on `origin/main` (without this change).

(1) Run the server using `llama stack run dev` without having
`FIREWORKS_API_KEY` in the environment.

(2) Run a test by specifying the FIREWORKS_API_KEY env var so it gets
stored in the thread local
```
pytest -s -v tests/integration/inference/test_text_inference.py \
    --stack-config http://localhost:8321 \
    --text-model accounts/fireworks/models/llama-v3p1-8b-instruct \
    -k test_text_chat_completion_with_tool_calling_and_streaming \
     --env FIREWORKS_API_KEY=<...>
``` 
Ensure you don't have any other API keys in the environment (otherwise
the bug will not reproduce due to other specifics in our testing code.)
Verify this works.

(3) Run the same command again without specifying FIREWORKS_API_KEY. See
that the request actually succeeds when it *should have failed*.


----
Now do the same tests on this branch, verify step (3) results in
failure.

Finally, run the full `test_text_inference.py` test suite with this
change, verify it succeeds.
2025-03-08 22:56:30 -08:00
Sébastien Han
7cf1e24c4e
feat(logging): implement category-based logging (#1362)
# What does this PR do?

This commit introduces a new logging system that allows loggers to be
assigned
a category while retaining the logger name based on the file name. The
log
format includes both the logger name and the category, producing output
like:

```
INFO     2025-03-03 21:44:11,323 llama_stack.distribution.stack:103 [core]: Tool_groups: builtin::websearch served by
         tavily-search
```

Key features include:

- Category-based logging: Loggers can be assigned a category (e.g.,
  "core", "server") when programming. The logger can be loaded like
  this: `logger = get_logger(name=__name__, category="server")`
- Environment variable control: Log levels can be configured
per-category using the
  `LLAMA_STACK_LOGGING` environment variable. For example:
`LLAMA_STACK_LOGGING="server=DEBUG;core=debug"` enables DEBUG level for
the "server"
    and "core" categories.
- `LLAMA_STACK_LOGGING="all=debug"` sets DEBUG level globally for all
categories and
    third-party libraries.

This provides fine-grained control over logging levels while maintaining
a clean and
informative log format.

The formatter uses the rich library which provides nice colors better
stack traces like so:

```
ERROR    2025-03-03 21:49:37,124 asyncio:1758 [uncategorized]: unhandled exception during asyncio.run() shutdown
         task: <Task finished name='Task-16' coro=<handle_signal.<locals>.shutdown() done, defined at
         /Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py:146>
         exception=UnboundLocalError("local variable 'loop' referenced before assignment")>
         ╭────────────────────────────────────── Traceback (most recent call last) ───────────────────────────────────────╮
         │ /Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py:178 in shutdown                │
         │                                                                                                                │
         │   175 │   │   except asyncio.CancelledError:                                                                   │
         │   176 │   │   │   pass                                                                                         │
         │   177 │   │   finally:                                                                                         │
         │ ❱ 178 │   │   │   loop.stop()                                                                                  │
         │   179 │                                                                                                        │
         │   180 │   loop = asyncio.get_running_loop()                                                                    │
         │   181 │   loop.create_task(shutdown())                                                                         │
         ╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
         UnboundLocalError: local variable 'loop' referenced before assignment
```

Co-authored-by: Ashwin Bharambe <@ashwinb>
Signed-off-by: Sébastien Han <seb@redhat.com>

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

```
python -m llama_stack.distribution.server.server --yaml-config ./llama_stack/templates/ollama/run.yaml
INFO     2025-03-03 21:55:35,918 __main__:365 [server]: Using config file: llama_stack/templates/ollama/run.yaml           
INFO     2025-03-03 21:55:35,925 __main__:378 [server]: Run configuration:                                                 
INFO     2025-03-03 21:55:35,928 __main__:380 [server]: apis:                                                              
         - agents                                                     
``` 
[//]: # (## Documentation)

---------

Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-03-07 11:34:30 -08:00
ehhuang
46bc5f4a7a
chore: log exception (#1452)
Summary:

Test Plan:
<img width="1236" alt="image"
src="https://github.com/user-attachments/assets/facc43ba-85ff-42e4-8e04-b7970c630c4d"
/>
2025-03-06 11:42:51 -08:00
Ashwin Bharambe
0a76ece249 feat: add more logs to agent_instance.py 2025-03-03 16:15:47 -08:00
Ashwin Bharambe
754feba61f
feat: add a configurable category-based logger (#1352)
A self-respecting server needs good observability which starts with
configurable logging. Llama Stack had little until now. This PR adds a
`logcat` facility towards that. Callsites look like:

```python
logcat.debug("inference", f"params to ollama: {params}")
```

- the first parameter is a category. there is a static list of
categories in `llama_stack/logcat.py`
- each category can be associated with a log-level which can be
configured via the `LLAMA_STACK_LOGGING` env var.
- a value `LLAMA_STACK_LOGGING=inference=debug;server=info"` does the
obvious thing. there is a special key called `all` which is an alias for
all categories

## Test Plan

Ran with `LLAMA_STACK_LOGGING="all=debug" llama stack run fireworks` and
saw the following:


![image](https://github.com/user-attachments/assets/d24b95ab-3941-426c-9ea0-a4c62542e6f0)

Hit it with a client-sdk test case and saw this:


![image](https://github.com/user-attachments/assets/3fee8c6c-986e-4125-a09c-f5dc019682e2)
2025-03-02 18:51:14 -08:00
Sébastien Han
929c5f0842
refactor(server): replace print statements with logger (#1250)
# What does this PR do?

- Introduced logging in `StackRun` to replace print-based messages
- Improved error handling for config file loading and parsing
- Replaced `cprint` with `logger.error` for consistent error messaging
- Ensured logging is used in `server.py` for startup, shutdown, and
runtime messages
- Added missing exception handling for invalid providers

Signed-off-by: Sébastien Han <seb@redhat.com>

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-02-25 21:31:37 -08:00
ehhuang
1166afdf76
fix: some telemetry APIs don't currently work (#1188)
Summary:

This bug is surfaced by using the http LS client. The issue is that
non-scalar values in 'GET' method are `body` params in fastAPI, but our
spec generation script doesn't respect that. We fix by just making them
POST method instead.

Test Plan:
Test API call with newly sync'd client
(https://github.com/meta-llama/llama-stack-client-python/pull/149)

<img width="1114" alt="image"
src="https://github.com/user-attachments/assets/7710aca5-d163-4e00-a465-14e6fcaac2b2"
/>
2025-02-20 14:09:25 -08:00
Sébastien Han
e4a1579e63
build: format codebase imports using ruff linter (#1028)
# What does this PR do?

- Configured ruff linter to automatically fix import sorting issues.
- Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are
applied.
- Enabled the 'I' selection to focus on import-related linting rules.
- Ran the linter, and formatted all codebase imports accordingly.
- Removed the black dep from the "dev" group since we use ruff

Signed-off-by: Sébastien Han <seb@redhat.com>

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-02-13 10:06:21 -08:00
Sébastien Han
418645696a
fix: improve signal handling and update dependencies (#1044)
# What does this PR do?
This commit enhances the signal handling mechanism in the server by
improving the `handle_signal` (previously handle_sigint) function. It
now properly retrieves the signal name, ensuring clearer logging when a
termination signal is received. Additionally, it cancels all running
tasks and waits for their completion before stopping the event loop,
allowing for a more graceful shutdown. Support for handling
SIGTERM has also been added alongside SIGINT.

Before the changes, handle_sigint used asyncio.run(run_shutdown()).
However, asyncio.run() is meant to start a new event loop, and calling
it inside an existing one (like when running Uvicorn) raises an error.
The fix replaces asyncio.run(run_shutdown()) with an async function
scheduled on the existing loop using loop.create_task(shutdown()). This
ensures that the shutdown coroutine runs within the current event loop
instead of trying to create a new one.

Furthermore, this commit updates the project dependencies. `fastapi` and
`uvicorn` have been added to the development dependencies in
`pyproject.toml` and `uv.lock`, ensuring that the necessary packages are
available for development and execution.

Closes: https://github.com/meta-llama/llama-stack/issues/1043
Signed-off-by: Sébastien Han <seb@redhat.com>

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

Run a server and send SIGINT:

```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m llama_stack.distribution.server.server --yaml-config ./llama_stack/templates/ollama/run.yaml
Using config file: llama_stack/templates/ollama/run.yaml
Run configuration:
apis:
- agents
- datasetio
- eval
- inference
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
container_image: null
datasets: []
eval_tasks: []
image_name: ollama
metadata_store:
  db_path: /Users/leseb/.llama/distributions/ollama/registry.db
  namespace: null
  type: sqlite
models:
- metadata: {}
  model_id: meta-llama/Llama-3.2-3B-Instruct
  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType
  - llm
  provider_id: ollama
  provider_model_id: null
- metadata:
    embedding_dimension: 384
  model_id: all-MiniLM-L6-v2
  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType
  - embedding
  provider_id: sentence-transformers
  provider_model_id: null
providers:
  agents:
  - config:
      persistence_store:
        db_path: /Users/leseb/.llama/distributions/ollama/agents_store.db
        namespace: null
        type: sqlite
    provider_id: meta-reference
    provider_type: inline::meta-reference
  datasetio:
  - config: {}
    provider_id: huggingface
    provider_type: remote::huggingface
  - config: {}
    provider_id: localfs
    provider_type: inline::localfs
  eval:
  - config: {}
    provider_id: meta-reference
    provider_type: inline::meta-reference
  inference:
  - config:
      url: http://localhost:11434
    provider_id: ollama
    provider_type: remote::ollama
  - config: {}
    provider_id: sentence-transformers
    provider_type: inline::sentence-transformers
  safety:
  - config: {}
    provider_id: llama-guard
    provider_type: inline::llama-guard
  scoring:
  - config: {}
    provider_id: basic
    provider_type: inline::basic
  - config: {}
    provider_id: llm-as-judge
    provider_type: inline::llm-as-judge
  - config:
      openai_api_key: '********'
    provider_id: braintrust
    provider_type: inline::braintrust
  telemetry:
  - config:
      service_name: llama-stack
      sinks: console,sqlite
      sqlite_db_path: /Users/leseb/.llama/distributions/ollama/trace_store.db
    provider_id: meta-reference
    provider_type: inline::meta-reference
  tool_runtime:
  - config:
      api_key: '********'
      max_results: 3
    provider_id: brave-search
    provider_type: remote::brave-search
  - config:
      api_key: '********'
      max_results: 3
    provider_id: tavily-search
    provider_type: remote::tavily-search
  - config: {}
    provider_id: code-interpreter
    provider_type: inline::code-interpreter
  - config: {}
    provider_id: rag-runtime
    provider_type: inline::rag-runtime
  vector_io:
  - config:
      kvstore:
        db_path: /Users/leseb/.llama/distributions/ollama/faiss_store.db
        namespace: null
        type: sqlite
    provider_id: faiss
    provider_type: inline::faiss
scoring_fns: []
server:
  port: 8321
  tls_certfile: null
  tls_keyfile: null
shields: []
tool_groups:
- args: null
  mcp_endpoint: null
  provider_id: tavily-search
  toolgroup_id: builtin::websearch
- args: null
  mcp_endpoint: null
  provider_id: rag-runtime
  toolgroup_id: builtin::rag
- args: null
  mcp_endpoint: null
  provider_id: code-interpreter
  toolgroup_id: builtin::code_interpreter
vector_dbs: []
version: '2'

INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:213: Resolved 31 providers
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-inference => ollama
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-inference => sentence-transformers
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  models => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inference => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-vector_io => faiss
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-safety => llama-guard
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  shields => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  safety => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  vector_dbs => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  vector_io => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-tool_runtime => brave-search
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-tool_runtime => tavily-search
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-tool_runtime => code-interpreter
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-tool_runtime => rag-runtime
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  tool_groups => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  tool_runtime => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  agents => meta-reference
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-datasetio => huggingface
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-datasetio => localfs
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  datasets => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  datasetio => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  telemetry => meta-reference
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-scoring => basic
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-scoring => llm-as-judge
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-scoring => braintrust
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  scoring_functions => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  scoring => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-eval => meta-reference
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  eval_tasks => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  eval => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inspect => __builtin__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:216: 
INFO 2025-02-12 10:21:03,723 llama_stack.providers.remote.inference.ollama.ollama:148: checking connectivity to Ollama at `http://localhost:11434`...
INFO 2025-02-12 10:21:03,734 httpx:1740: HTTP Request: GET http://localhost:11434/api/ps "HTTP/1.1 200 OK"
INFO 2025-02-12 10:21:03,843 faiss.loader:148: Loading faiss.
INFO 2025-02-12 10:21:03,865 faiss.loader:150: Successfully loaded faiss.
INFO 2025-02-12 10:21:03,868 faiss:173: Failed to load GPU Faiss: name 'GpuIndexIVFFlat' is not defined. Will not load constructor refs for GPU indexes.
Warning: `bwrap` is not available. Code interpreter tool will not work correctly.
INFO 2025-02-12 10:21:04,315 datasets:54: PyTorch version 2.6.0 available.
INFO 2025-02-12 10:21:04,556 httpx:1740: HTTP Request: GET http://localhost:11434/api/ps "HTTP/1.1 200 OK"
INFO 2025-02-12 10:21:04,557 llama_stack.providers.utils.inference.embedding_mixin:42: Loading sentence transformer for all-MiniLM-L6-v2...
INFO 2025-02-12 10:21:07,202 sentence_transformers.SentenceTransformer:210: Use pytorch device_name: mps
INFO 2025-02-12 10:21:07,202 sentence_transformers.SentenceTransformer:218: Load pretrained SentenceTransformer: all-MiniLM-L6-v2
INFO 2025-02-12 10:21:09,500 llama_stack.distribution.stack:102: Models: all-MiniLM-L6-v2 served by sentence-transformers
INFO 2025-02-12 10:21:09,500 llama_stack.distribution.stack:102: Models: meta-llama/Llama-3.2-3B-Instruct served by ollama
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::equality served by basic
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::regex_parser_multiple_choice_answer served by basic
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::subset_of served by basic
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-correctness served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-relevancy served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-similarity served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-entity-recall served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-precision served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-recall served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-relevancy served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::factuality served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::faithfulness served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: llm-as-judge::405b-simpleqa served by llm-as-judge
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: llm-as-judge::base served by llm-as-judge
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::code_interpreter served by code-interpreter
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::rag served by rag-runtime
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::websearch served by tavily-search
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:106: 
Serving API eval
 POST /v1/eval/tasks/{task_id}/evaluations
 DELETE /v1/eval/tasks/{task_id}/jobs/{job_id}
 GET /v1/eval/tasks/{task_id}/jobs/{job_id}/result
 GET /v1/eval/tasks/{task_id}/jobs/{job_id}
 POST /v1/eval/tasks/{task_id}/jobs
Serving API agents
 POST /v1/agents
 POST /v1/agents/{agent_id}/session
 POST /v1/agents/{agent_id}/session/{session_id}/turn
 DELETE /v1/agents/{agent_id}
 DELETE /v1/agents/{agent_id}/session/{session_id}
 GET /v1/agents/{agent_id}/session/{session_id}
 GET /v1/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id}
 GET /v1/agents/{agent_id}/session/{session_id}/turn/{turn_id}
Serving API scoring_functions
 GET /v1/scoring-functions/{scoring_fn_id}
 GET /v1/scoring-functions
 POST /v1/scoring-functions
Serving API safety
 POST /v1/safety/run-shield
Serving API inspect
 GET /v1/health
 GET /v1/inspect/providers
 GET /v1/inspect/routes
 GET /v1/version
Serving API tool_runtime
 POST /v1/tool-runtime/invoke
 GET /v1/tool-runtime/list-tools
 POST /v1/tool-runtime/rag-tool/insert
 POST /v1/tool-runtime/rag-tool/query
Serving API datasetio
 POST /v1/datasetio/rows
 GET /v1/datasetio/rows
Serving API shields
 GET /v1/shields/{identifier}
 GET /v1/shields
 POST /v1/shields
Serving API eval_tasks
 GET /v1/eval-tasks/{eval_task_id}
 GET /v1/eval-tasks
 POST /v1/eval-tasks
Serving API models
 GET /v1/models/{model_id}
 GET /v1/models
 POST /v1/models
 DELETE /v1/models/{model_id}
Serving API datasets
 GET /v1/datasets/{dataset_id}
 GET /v1/datasets
 POST /v1/datasets
 DELETE /v1/datasets/{dataset_id}
Serving API vector_io
 POST /v1/vector-io/insert
 POST /v1/vector-io/query
Serving API inference
 POST /v1/inference/chat-completion
 POST /v1/inference/completion
 POST /v1/inference/embeddings
Serving API tool_groups
 GET /v1/tools/{tool_name}
 GET /v1/toolgroups/{toolgroup_id}
 GET /v1/toolgroups
 GET /v1/tools
 POST /v1/toolgroups
 DELETE /v1/toolgroups/{toolgroup_id}
Serving API vector_dbs
 GET /v1/vector-dbs/{vector_db_id}
 GET /v1/vector-dbs
 POST /v1/vector-dbs
 DELETE /v1/vector-dbs/{vector_db_id}
Serving API scoring
 POST /v1/scoring/score
 POST /v1/scoring/score-batch
Serving API telemetry
 GET /v1/telemetry/traces/{trace_id}/spans/{span_id}
 GET /v1/telemetry/spans/{span_id}/tree
 GET /v1/telemetry/traces/{trace_id}
 POST /v1/telemetry/events
 GET /v1/telemetry/spans
 GET /v1/telemetry/traces
 POST /v1/telemetry/spans/export

Listening on ['::', '0.0.0.0']:5001
INFO:     Started server process [65372]
INFO:     Waiting for application startup.
INFO:     ASGI 'lifespan' protocol appears unsupported.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://['::', '0.0.0.0']:5001 (Press CTRL+C to quit)
^CINFO:     Shutting down
INFO:     Finished server process [65372]
Received signal SIGINT (2). Exiting gracefully...
INFO 2025-02-12 10:21:11,215 __main__:151: Shutting down ModelsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down InferenceRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ShieldsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down SafetyRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down VectorDBsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down VectorIORouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ToolGroupsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ToolRuntimeRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down MetaReferenceAgentsImpl
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DatasetsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DatasetIORouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down TelemetryAdapter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ScoringFunctionsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ScoringRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down EvalTasksRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down EvalRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DistributionInspectImpl
```

[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-02-13 08:07:59 -08:00
Ashwin Bharambe
f8f2f7f9bb
feat: Add HTTPS serving option (#1000)
# What does this PR do?

Enables HTTPS option for Llama Stack. 

While doing so, introduces a `ServerConfig` sub-structure to house all
server related configuration (port, ssl, etc.)

Also simplified the `start_container.sh` entrypoint to simply be
`python` instead of a complex bash command line.

## Test Plan

Conda: 

Run:
```bash
$ llama stack build --template together
$ llama stack run --port 8322        # ensure server starts 

$ llama-stack-client configure --endpoint http://localhost:8322
$ llama-stack-client models list
```

Create a self-signed SSL key / cert pair. Then, using a local checkout
of `llama-stack-client-python`, change
https://github.com/meta-llama/llama-stack-client-python/blob/main/src/llama_stack_client/_base_client.py#L759
to add `kwargs.setdefault("verify", False)` so SSL verification is
disabled. Then:

```bash
$ llama stack run --port 8322 --tls-keyfile <KEYFILE> --tls-certfile <CERTFILE>
$ llama-stack-client configure --endpoint https://localhost:8322  # notice the `https`
$ llama-stack-client models list
```

Also tested with containers (but of course one needs to make sure the
cert and key files are appropriately provided to the container.)
2025-02-07 09:39:08 -08:00
Yuan Tang
34ab7a3b6c
Fix precommit check after moving to ruff (#927)
Lint check in main branch is failing. This fixes the lint check after we
moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We
need to move to a `ruff.toml` file as well as fixing and ignoring some
additional checks.

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-02 06:46:45 -08:00
Ashwin Bharambe
9f14382d82
meta reference inference fixes (#797)
Miscellaneous fixes for meta reference inference

Tests for log probs dont pass because meta reference does not support
top_k > 1
2025-01-16 18:17:46 -08:00
Ashwin Bharambe
cb41848a2a disable version check optionally 2025-01-16 18:14:48 -08:00
Ashwin Bharambe
03ac84a829 Update default port from 5000 -> 8321 2025-01-16 15:26:48 -08:00
Dinesh Yeduguru
7fb2c1c48d
More idiomatic REST API (#765)
# What does this PR do?

This PR changes our API to follow more idiomatic REST API approaches of
having paths being resources and methods indicating the action being
performed.

Changes made to generator:
1) removed the prefix check of "get" as its not required and is actually
needed for other method types too
2) removed _ check on path since variables can have "_"



## Test Plan

LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v
tests/client-sdk/agents/test_agents.py
2025-01-15 13:20:09 -08:00
raghotham
ff182ff6de
rename LLAMASTACK_PORT to LLAMA_STACK_PORT for consistency with other env vars (#744)
# What does this PR do?

Rename environment var for consistency

## Test Plan

No regressions

## Sources

## Before submitting

- [X] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [X] Ran pre-commit to handle lint / formatting issues.
- [X] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [X] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
Co-authored-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-10 11:09:49 -08:00
Ashwin Bharambe
4938f2fe5d
Check version incompatibility (#738)
When we bump up `major.minor` we want to make sure clients can
immediately detect a version change and appropriately error out. It is
not reasonable to keep checking for API-level backwards compatibility
across such version bumps. Over time, we will make the check based only
on the major version perhaps.

### Test Plan

Manually updated `__version__` in the client SDK to be "0.1.0" which is
incompatible with server's current version "0.0.63", got the following
error:

<img width="1077" alt="image"
src="https://github.com/user-attachments/assets/06ae4659-0a25-4c4c-a999-ce44678d4e6f"
/>

Without this update, the CLI worked correctly.
2025-01-09 14:52:06 -08:00
Yuan Tang
96d8375663
Fix incorrect entrypoint for broken llama stack run (#706)
This fixes the issue when using `llama stack run` by correctly
specifying entrypoint:

```
LLAMA_STACK_DIR=. llama stack run /home/yutang/.llama/distributions/llamastack-vllm/vllm-run.yaml
Using config file: /home/yutang/.llama/distributions/llamastack-vllm/vllm-run.yaml
+ command -v selinuxenabled
+ selinuxenabled
+ DOCKER_OPTS=' --security-opt label=disable'
+ mounts=
+ '[' -n . ']'
++ readlink -f .
+ mounts=' -v /home/yutang/repos/llama-stack:/app/llama-stack-source'
+ '[' -n '' ']'
+ version_tag=latest
+ '[' -n '' ']'
+ '[' -n . ']'
+ version_tag=dev
+ podman run --security-opt label=disable -it -p 5000:5000 -v /home/yutang/.llama/distributions/llamastack-vllm/vllm-run.yaml:/app/config.yaml -v /home/yutang/repos/llama-stack:/app/llama-stack-source localhost/distribution-vllm:dev python -m llama_stack.distribution.server.server --yaml-config /app/config.yaml --port 5000
usage: server.py
       [-h]
       [--yaml-config YAML_CONFIG]
       [--template TEMPLATE]
       [--port PORT]
       [--disable-ipv6]
       [--env ENV]
server.py: error: unrecognized arguments: python -m llama_stack.distribution.server.server
++ error_handler 88
++ echo 'Error occurred in script at line: 88'
Error occurred in script at line: 88
++ exit 1

```

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-03 09:47:10 -08:00
Ashwin Bharambe
e3f187fb83 Redact sensitive information from configs when printing, etc. 2025-01-02 13:54:02 -08:00
Xi Yan
3c72c034e6
[remove import *] clean up import *'s (#689)
# What does this PR do?

- as title, cleaning up `import *`'s
- upgrade tests to make them more robust to bad model outputs
- remove import *'s in llama_stack/apis/* (skip __init__ modules)
<img width="465" alt="image"
src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2"
/>

- run `sh run_openapi_generator.sh`, no types gets affected

## Test Plan

### Providers Tests

**agents**
```
pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8
```

**inference**
```bash
# meta-reference
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

# together
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py 
```

**safety**
```
pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B
```

**memory**
```
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
```

**scoring**
```
pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
```


**datasetio**
```
pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py
pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py
```


**eval**
```
pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py
```

### Client-SDK Tests
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk
```

### llama-stack-apps
```
PORT=5000
LOCALHOST=localhost

python -m examples.agents.hello $LOCALHOST $PORT
python -m examples.agents.inflation $LOCALHOST $PORT
python -m examples.agents.podcast_transcript $LOCALHOST $PORT
python -m examples.agents.rag_as_attachments $LOCALHOST $PORT
python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT
python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT
python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT

# Vision model
python -m examples.interior_design_assistant.app
python -m examples.agent_store.app $LOCALHOST $PORT
```

### CLI
```
which llama
llama model prompt-format -m Llama3.2-11B-Vision-Instruct
llama model list
llama stack list-apis
llama stack list-providers inference

llama stack build --template ollama --image-type conda
```

### Distributions Tests
**ollama**
```
llama stack build --template ollama --image-type conda
ollama run llama3.2:1b-instruct-fp16
llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
```

**fireworks**
```
llama stack build --template fireworks --image-type conda
llama stack run ./llama_stack/templates/fireworks/run.yaml
```

**together**
```
llama stack build --template together --image-type conda
llama stack run ./llama_stack/templates/together/run.yaml
```

**tgi**
```
llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-27 15:45:44 -08:00
Xi Yan
c699e884b5
fix telemetry import (#585)
# What does this PR do?

fix issue

<img width="921" alt="image"
src="https://github.com/user-attachments/assets/26f7499f-fae1-4c93-9de3-1ae7ee7c5144">


## Test Plan

```
llama stack run
```
<img width="657" alt="image"
src="https://github.com/user-attachments/assets/266b6ac2-f991-4b38-841c-2a610b7d9f0f">


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-09 11:18:53 -08:00
Ashwin Bharambe
084ec337af Small cleanup of console logs 2024-12-06 10:29:24 -08:00
Dinesh Yeduguru
fcd6449519
Telemetry API redesign (#525)
# What does this PR do?
Change the Telemetry API to be able to support different use cases like
returning traces for the UI and ability to export for Evals.
Other changes:
* Add a new trace_protocol decorator to decorate all our API methods so
that any call to them will automatically get traced across all impls.
* There is some issue with the decorator pattern of span creation when
using async generators, where there are multiple yields with in the same
context. I think its much more explicit by using the explicit context
manager pattern using with. I moved the span creations in agent instance
to be using with
* Inject session id at the turn level, which should quickly give us all
traces across turns for a given session

Addresses #509

## Test Plan
```
llama stack run /Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml
PYTHONPATH=. python -m examples.agents.rag_with_memory_bank localhost 5000


 curl -X POST 'http://localhost:5000/alpha/telemetry/query-traces' \
-H 'Content-Type: application/json' \
-d '{
  "attribute_filters": [
    {
      "key": "session_id",
      "op": "eq",
      "value": "dd667b87-ca4b-4d30-9265-5a0de318fc65" }],
  "limit": 100,
  "offset": 0,
  "order_by": ["start_time"]
}' | jq .
[
  {
    "trace_id": "6902f54b83b4b48be18a6f422b13e16f",
    "root_span_id": "5f37b85543afc15a",
    "start_time": "2024-12-04T08:08:30.501587",
    "end_time": "2024-12-04T08:08:36.026463"
  },
  {
    "trace_id": "92227dac84c0615ed741be393813fb5f",
    "root_span_id": "af7c5bb46665c2c8",
    "start_time": "2024-12-04T08:08:36.031170",
    "end_time": "2024-12-04T08:08:41.693301"
  },
  {
    "trace_id": "7d578a6edac62f204ab479fba82f77b6",
    "root_span_id": "1d935e3362676896",
    "start_time": "2024-12-04T08:08:41.695204",
    "end_time": "2024-12-04T08:08:47.228016"
  },
  {
    "trace_id": "dbd767d76991bc816f9f078907dc9ff2",
    "root_span_id": "f5a7ee76683b9602",
    "start_time": "2024-12-04T08:08:47.234578",
    "end_time": "2024-12-04T08:08:53.189412"
  }
]


curl -X POST 'http://localhost:5000/alpha/telemetry/get-span-tree' \
-H 'Content-Type: application/json' \
-d '{ "span_id" : "6cceb4b48a156913", "max_depth": 2, "attributes_to_return": ["input"] }' | jq .
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   875  100   790  100    85  18462   1986 --:--:-- --:--:-- --:--:-- 20833
{
  "span_id": "6cceb4b48a156913",
  "trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
  "parent_span_id": "892a66d726c7f990",
  "name": "retrieve_rag_context",
  "start_time": "2024-12-04T09:28:21.781995",
  "end_time": "2024-12-04T09:28:21.913352",
  "attributes": {
    "input": [
      "{\"role\":\"system\",\"content\":\"You are a helpful assistant\"}",
      "{\"role\":\"user\",\"content\":\"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.\",\"context\":null}"
    ]
  },
  "children": [
    {
      "span_id": "1a2df181854064a8",
      "trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
      "parent_span_id": "6cceb4b48a156913",
      "name": "MemoryRouter.query_documents",
      "start_time": "2024-12-04T09:28:21.787620",
      "end_time": "2024-12-04T09:28:21.906512",
      "attributes": {
        "input": null
      },
      "children": [],
      "status": "ok"
    }
  ],
  "status": "ok"
}

```

<img width="1677" alt="Screenshot 2024-12-04 at 9 42 56 AM"
src="https://github.com/user-attachments/assets/4d3cea93-05ce-415a-93d9-4b1628631bf8">
2024-12-04 11:22:45 -08:00
Dinesh Yeduguru
501e7c9d64
Fix opentelemetry adapter (#510)
# What does this PR do?

This PR fixes some of the issues with our telemetry setup to enable logs
to be delivered to opentelemetry and jaeger. Main fixes
1) Updates the open telemetry provider to use the latest oltp exports
instead of deprected ones.
2) Adds a tracing middleware, which injects traces into each HTTP
request that the server recieves and this is going to be the root trace.
Previously, we did this in the create_dynamic_route method, which is
actually not the actual exectuion flow, but more of a config and this
causes the traces to end prematurely. Through middleware, we plugin the
trace start and end at the right location.
3) We manage our own methods to create traces and spans and this does
not fit well with Opentelemetry SDK since it does not support provide a
way to take in traces and spans that are already created. it expects us
to use the SDK to create them. For now, I have a hacky approach of just
maintaining a map from our internal telemetry objects to the open
telemetry specfic ones. This is not the ideal solution. I will explore
other ways to get around this issue. for now, to have something that
works, i am going to keep this as is.

Addresses: #509
2024-11-22 18:18:11 -08:00
Dinesh Yeduguru
6395dadc2b
use logging instead of prints (#499)
# What does this PR do?

This PR moves all print statements to use logging. Things changed:
- Had to add `await start_trace("sse_generator")` to server.py to
actually get tracing working. else was not seeing any logs
- If no telemetry provider is provided in the run.yaml, we will write to
stdout
- by default, the logs are going to be in JSON, but we expose an option
to configure to output in a human readable way.
2024-11-21 11:32:53 -08:00
Ashwin Bharambe
681322731b
Make run yaml optional so dockers can start with just --env (#492)
When running with dockers, the idea is that users be able to work purely
with the `llama stack` CLI. They should not need to know about the
existence of any YAMLs unless they need to. This PR enables it.

The docker command now doesn't need to volume mount a yaml and can
simply be:
```bash
docker run -v ~/.llama/:/root/.llama \
  --env A=a --env B=b
```

## Test Plan

Check with conda first (no regressions):
```bash
LLAMA_STACK_DIR=. llama stack build --template ollama
llama stack run ollama --port 5001

# server starts up correctly
```

Check with docker
```bash
# build the docker
LLAMA_STACK_DIR=. llama stack build --template ollama --image-type docker

export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"

docker run -it  -p 5001:5001 \
  -v ~/.llama:/root/.llama \
  -v $PWD:/app/llama-stack-source \
  localhost/distribution-ollama:dev \
  --port 5001 \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env OLLAMA_URL=http://host.docker.internal:11434
```

Note that volume mounting to `/app/llama-stack-source` is only needed
because we built the docker with uncommitted source code.
2024-11-20 13:11:40 -08:00
Dinesh Yeduguru
fe19076838
get stack run config based on template name (#477)
This PR adds a method in stack to return the stackrunconfig object based
on the template name. This will be used to instantiate a direct client
without the need for an explicit run.yaml

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-18 18:05:05 -08:00
Ashwin Bharambe
fb15ff4a97 Move to use argparse, fix issues with multiple --env cmdline options 2024-11-18 16:31:59 -08:00
Ashwin Bharambe
b87f3ac499 Allow server to accept --env key pairs 2024-11-18 16:17:59 -08:00