Commit graph

55 commits

Author SHA1 Message Date
Ashwin Bharambe
ffedb81c11
Significantly simpler and malleable test setup (#360)
* Significantly simpler and malleable test setup

* convert memory tests

* refactor fixtures and add support for composable fixtures

* Fix memory to use the newer fixture organization

* Get agents tests working

* Safety tests work

* yet another refactor to make this more general

now it accepts --inference-model, --safety-model options also

* get multiple providers working for meta-reference (for inference + safety)

* Add README.md

---------

Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
2024-11-04 17:36:43 -08:00
Ashwin Bharambe
eccd7dc4a9 Avoid warnings from pydantic for overriding schema
Also fix structured output in completions
2024-10-28 21:39:48 -07:00
Xi Yan
7b8748c53e
[Evals API][6/n] meta-reference llm as judge, registration for ScoringFnDefs (#330)
* wip scoring refactor

* llm as judge, move folders

* test full generation + eval

* extract score regex to llm context

* remove prints, cleanup braintrust in this branch

* change json -> class

* remove initialize

* address nits

* check identifier prefix

* udpate MANIFEST
2024-10-28 14:08:42 -07:00
Xi Yan
abdf7cddf3
[Evals API][4/n] evals with generation meta-reference impl (#303)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* evals with generation

* add all rows scores to ScoringResult

* minor typing

* bugfix

* scoring function def rename

* rebase name

* refactor

* address comments

* Update iOS inference instructions for new quantization

* Small updates to quantization config

* Fix score threshold in faiss

* Bump version to 0.0.45

* Handle both ipv6 and ipv4 interfaces together

* update manifest for build templates

* Update getting_started.md

* chatcompletion & completion input type validation

* inclusion->subsetof

* error checking

* scoring_function -> scoring_fn rename, scorer -> scoring_fn rename

* address comments

* [Evals API][5/n] fixes to generate openapi spec (#323)

* generate openapi

* typing comment, dataset -> dataset_id

* remove custom type

* sample eval run.yaml

---------

Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2024-10-25 13:12:39 -07:00
Sachin Mehta
c05fbf14b3
Added hadamard transform for spinquant (#326)
* Added hadamard transform for spinquant

* Changed from config to model_args

* Added an assertion for model args

* Use enum.value to check against str

* pre-commit

---------

Co-authored-by: Sachin Mehta <sacmehta@fb.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2024-10-25 12:58:48 -07:00
Xi Yan
07f9bf723f
fix broken --list-templates with adding build.yaml files for packaging (#327)
* add build files to templates

* fix templates

* manifest

* symlink

* symlink

* precommit

* change everything to docker build.yaml

* remove image_type in templates

* fix build from templates CLI

* fix readmes
2024-10-25 12:51:22 -07:00
Sarthak Deshpande
df141b6ef3
Fix for get_agents_session (#300) 2024-10-24 18:36:27 -07:00
Xi Yan
cb84034567
[Evals API][3/n] scoring_functions / scoring meta-reference implementations (#296)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* add all rows scores to ScoringResult

* bugfix

* scoring function def rename
2024-10-24 14:52:30 -07:00
Ashwin Bharambe
205bcfdd4e Fix score threshold in faiss 2024-10-24 12:11:58 -07:00
Ashwin Bharambe
7afe51c84d
New quantized models (#301) 2024-10-24 08:38:56 -07:00
Xi Yan
821810657f
[Evals API][2/n] datasets / datasetio meta-reference implementation (#288)
* skeleton dataset / datasetio

* dataset datasetio

* config

* address comments

* delete dataset_utils

* address comments

* naming fix
2024-10-22 16:12:16 -07:00
Sarthak Deshpande
8a01b9e40c
Added implementations for get_agents_session, delete_agents_session and delete_agents (#267) 2024-10-22 13:50:43 -07:00
Ashwin Bharambe
c06718fbd5
Add support for Structured Output / Guided decoding (#281)
Added support for structured output in the API and added a reference implementation for meta-reference.

A few notes:

* Two formats are specified in the API: Json schema and EBNF based grammar
* Implementation only supports Json for now
We use lm-format-enhancer to provide the implementation right now but may change this especially because BNF grammars aren't supported by that library.
Fireworks has support for structured output and Together has limited supported for it too. Subsequent PRs will add these changes. We would like all our inference providers to provide structured output for llama models since it is an extremely important and highly sought-after need by the developers.
2024-10-22 12:53:34 -07:00
Ashwin Bharambe
2089427d60
Make all methods async def again; add completion() for meta-reference (#270)
PR #201 had made several changes while trying to fix issues with getting the stream=False branches of inference and agents API working. As part of this, it made a change which was slightly gratuitous. Namely, making chat_completion() and brethren "def" instead of "async def".

The rationale was that this allowed the user (within llama-stack) of this to use it as:

```
async for chunk in api.chat_completion(params)
```

However, it causes unnecessary confusion for several folks. Given that clients (e.g., llama-stack-apps) anyway use the SDK methods (which are completely isolated) this choice was not ideal. Let's revert back so the call now looks like:

```
async for chunk in await api.chat_completion(params)
```

Bonus: Added a completion() implementation for the meta-reference provider. Technically should have been another PR :)
2024-10-18 20:50:59 -07:00
Ashwin Bharambe
71a905e93f Allow overridding checkpoint_dir via config 2024-10-18 14:28:06 -07:00
Ashwin Bharambe
33afd34e6f
Add an option to not use elastic agents for meta-reference inference (#269) 2024-10-18 12:51:10 -07:00
Ashwin Bharambe
09b793c4d6 Fix fp8 implementation which had bit-rotten a bit
I only tested with "on-the-fly" bf16 -> fp8 conversion, not the "load
from fp8" codepath.

YAML I tested with:

```
providers:
  - provider_id: quantized
    provider_type: meta-reference-quantized
    config:
      model: Llama3.1-8B-Instruct
      quantization:
        type: fp8
```
2024-10-15 13:57:01 -07:00
Yuan Tang
2128e61da2
Fix incorrect completion() signature for Databricks provider (#236) 2024-10-11 08:47:57 -07:00
Xi Yan
ca29980c6b fix agents context retriever 2024-10-10 20:17:29 -07:00
Ashwin Bharambe
1ff0476002 Split off meta-reference-quantized provider 2024-10-10 16:03:19 -07:00
Ashwin Bharambe
6bb57e72a7
Remove "routing_table" and "routing_key" concepts for the user (#201)
This PR makes several core changes to the developer experience surrounding Llama Stack.

Background: PR #92 introduced the notion of "routing" to the Llama Stack. It introduces three object types: (1) models, (2) shields and (3) memory banks. Each of these objects can be associated with a distinct provider. So you can get model A to be inferenced locally while model B, C can be inference remotely (e.g.)

However, this had a few drawbacks:

you could not address the provider instances -- i.e., if you configured "meta-reference" with a given model, you could not assign an identifier to this instance which you could re-use later.
the above meant that you could not register a "routing_key" (e.g. model) dynamically and say "please use this existing provider I have already configured" for a new model.
the terms "routing_table" and "routing_key" were exposed directly to the user. in my view, this is way too much overhead for a new user (which almost everyone is.) people come to the stack wanting to do ML and encounter a completely unexpected term.
What this PR does: This PR structures the run config with only a single prominent key:

- providers
Providers are instances of configured provider types. Here's an example which shows two instances of the remote::tgi provider which are serving two different models.

providers:
  inference:
  - provider_id: foo
    provider_type: remote::tgi
    config: { ... }
  - provider_id: bar
    provider_type: remote::tgi
    config: { ... }
Secondly, the PR adds dynamic registration of { models | shields | memory_banks } to the API surface. The distribution still acts like a "routing table" (as previously) except that it asks the backing providers for a listing of these objects. For example it asks a TGI or Ollama inference adapter what models it is serving. Only the models that are being actually served can be requested by the user for inference. Otherwise, the Stack server will throw an error.

When dynamically registering these objects, you can use the provider IDs shown above. Info about providers can be obtained using the Api.inspect set of endpoints (/providers, /routes, etc.)

The above examples shows the correspondence between inference providers and models registry items. Things work similarly for the safety <=> shields and memory <=> memory_banks pairs.

Registry: This PR also makes it so that Providers need to implement additional methods for registering and listing objects. For example, each Inference provider is now expected to implement the ModelsProtocolPrivate protocol (naming is not great!) which consists of two methods

register_model
list_models
The goal is to inform the provider that a certain model needs to be supported so the provider can make any relevant backend changes if needed (or throw an error if the model cannot be supported.)

There are many other cleanups included some of which are detailed in a follow-up comment.
2024-10-10 10:24:13 -07:00
Dalton Flanagan
7a8aa775e5
JSON serialization for parallel processing queue (#232)
* send/recv pydantic json over socket

* fixup

* address feedback

* bidirectional wrapper

* second round of feedback
2024-10-09 17:24:12 -04:00
Xi Yan
4d5f7459aa
[bugfix] Fix logprobs on meta-reference impl (#213)
* fix log probs

* add back LogProbsConfig

* error handling

* bugfix
2024-10-07 19:42:39 -07:00
Mindaugas
53d440e952
Fix ValueError in case chunks are empty (#206) 2024-10-07 08:55:06 -07:00
Ashwin Bharambe
f913b57397 fix fp8 imports 2024-10-03 14:40:21 -07:00
Ashwin Bharambe
210b71b0ba
fix prompt guard (#177)
Several other fixes to configure. Add support for 1b/3b models in ollama.
2024-10-03 11:07:53 -07:00
Ashwin Bharambe
19ce6bf009 Don't validate prompt-guard anymore 2024-10-02 20:43:57 -07:00
Ashwin Bharambe
4a75d922a9 Make Llama Guard 1B the default 2024-10-02 09:48:26 -07:00
Ashwin Bharambe
eb2d8a31a5
Add a RoutableProvider protocol, support for multiple routing keys (#163)
* Update configure.py to use multiple routing keys for safety
* Refactor distribution/datatypes into a providers/datatypes
* Cleanup
2024-09-30 17:30:21 -07:00
Xi Yan
4ae8c63a2b pre-commit lint 2024-09-28 16:04:41 -07:00
Ashwin Bharambe
0a3999a9a4
Use inference APIs for executing Llama Guard (#121)
We should use Inference APIs to execute Llama Guard instead of directly needing to use HuggingFace modeling related code. The actual inference consideration is handled by Inference.
2024-09-28 15:40:06 -07:00
Russell Bryant
5828ffd53b
inference: Fix download command in error msg (#133)
I got this error message and tried to the run the command presented
and it didn't work. The model needs to be give with `--model-id`
instead of as a positional argument.

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-09-27 13:31:11 -07:00
Kate Plawiak
3ae1597b9b
load models using hf model id (#108) 2024-09-25 18:40:09 -07:00
Xi Yan
82f420c4f0
fix safety using inference (#99) 2024-09-25 11:30:27 -07:00
Ashwin Bharambe
d442af0818 Add safety impl for llama guard vision 2024-09-25 11:07:19 -07:00
Ashwin Bharambe
4fcda00872 Re-apply revert 2024-09-25 11:00:43 -07:00
Ashwin Bharambe
56aed59eb4
Support for Llama3.2 models and Swift SDK (#98) 2024-09-25 10:29:58 -07:00
Xi Yan
45be9f3b85 fix agent's embedding model config 2024-09-24 22:49:49 -07:00
Ashwin Bharambe
a2465f3f9c Revert parts of 0d2eb3bd25 2024-09-24 19:20:51 -07:00
Ashwin Bharambe
0d2eb3bd25 Use inference APIs for running llama guard
Test Plan:

First, start a TGI container with `meta-llama/Llama-Guard-3-8B` model
serving on port 5099. See https://github.com/meta-llama/llama-stack/pull/53 and its
description for how.

Then run llama-stack with the following run config:

```
image_name: safety
docker_image: null
conda_env: safety
apis_to_serve:
- models
- inference
- shields
- safety
api_providers:
  inference:
    providers:
    - remote::tgi
  safety:
    providers:
    - meta-reference
  telemetry:
    provider_id: meta-reference
    config: {}
routing_table:
  inference:
  - provider_id: remote::tgi
    config:
      url: http://localhost:5099
      api_token: null
      hf_endpoint_name: null
    routing_key: Llama-Guard-3-8B
  safety:
  - provider_id: meta-reference
    config:
      llama_guard_shield:
        model: Llama-Guard-3-8B
        excluded_categories: []
        disable_input_check: false
        disable_output_check: false
      prompt_guard_shield: null
    routing_key: llama_guard
```

Now simply run `python -m llama_stack.apis.safety.client localhost
<port>` and check that the llama_guard shield calls run correctly. (The
injection_shield calls fail as expected since we have not set up a
router for them.)
2024-09-24 17:02:57 -07:00
Xi Yan
f92ff86b96 fix shields in agents safety 2024-09-23 21:22:22 -07:00
Ashwin Bharambe
c9005e95ed Another attempt at a proper bugfix for safety violations 2024-09-23 19:06:30 -07:00
Xi Yan
e5bdd6615a bug fix for safety violation 2024-09-23 18:17:15 -07:00
Xi Yan
70fb70a71c fix URL issue with agents 2024-09-23 16:44:25 -07:00
Ashwin Bharambe
ec4fc800cc
[API Updates] Model / shield / memory-bank routing + agent persistence + support for private headers (#92)
This is yet another of those large PRs (hopefully we will have less and less of them as things mature fast). This one introduces substantial improvements and some simplifications to the stack.

Most important bits:

* Agents reference implementation now has support for session / turn persistence. The default implementation uses sqlite but there's also support for using Redis.

* We have re-architected the structure of the Stack APIs to allow for more flexible routing. The motivating use cases are:
  - routing model A to ollama and model B to a remote provider like Together
  - routing shield A to local impl while shield B to a remote provider like Bedrock
  - routing a vector memory bank to Weaviate while routing a keyvalue memory bank to Redis

* Support for provider specific parameters to be passed from the clients. A client can pass data using `x_llamastack_provider_data` parameter which can be type-checked and provided to the Adapter implementations.
2024-09-23 14:22:22 -07:00
Hardik Shah
8bf8c07eb3 Respect user sent instructions in agent config and add them to system prompt 2024-09-21 16:46:10 -07:00
Ashwin Bharambe
132f9429b1 Add a test for CLI, but not fully done so disabled 2024-09-19 13:27:07 -07:00
Ashwin Bharambe
8b3ffa33de Add another test case 2024-09-19 13:02:57 -07:00
Ashwin Bharambe
abb43936ab Add a test runner and 2 very simple tests for agents 2024-09-19 12:22:48 -07:00
Ashwin Bharambe
f5eda1decf Add default for max_seq_len 2024-09-18 21:59:10 -07:00