Bumps [llama-api-client](https://github.com/meta-llama/llama-api-python)
from 0.1.2 to 0.2.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/meta-llama/llama-api-python/releases">llama-api-client's
releases</a>.</em></p>
<blockquote>
<h2>v0.2.0</h2>
<h2>0.2.0 (2025-08-07)</h2>
<p>Full Changelog: <a
href="https://github.com/meta-llama/llama-api-python/compare/v0.1.2...v0.2.0">v0.1.2...v0.2.0</a></p>
<h3>Features</h3>
<ul>
<li>clean up environment call outs (<a
href="4afbd01ed7">4afbd01</a>)</li>
<li><strong>client:</strong> support file upload requests (<a
href="ec42e80b62">ec42e80</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<ul>
<li><strong>api:</strong> remove chat completion request model (<a
href="94c4e9fd50">94c4e9f</a>)</li>
<li><strong>client:</strong> don't send Content-Type header on GET
requests (<a
href="efec88aa51">efec88a</a>)</li>
<li><strong>parsing:</strong> correctly handle nested discriminated
unions (<a
href="b6276863be">b627686</a>)</li>
<li><strong>parsing:</strong> ignore empty metadata (<a
href="d6ee85101e">d6ee851</a>)</li>
<li><strong>parsing:</strong> parse extra field types (<a
href="f03ca22860">f03ca22</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li>add examples (<a
href="abfa065721">abfa065</a>)</li>
<li><strong>internal:</strong> bump pinned h11 dep (<a
href="d40e1b1d73">d40e1b1</a>)</li>
<li><strong>internal:</strong> fix ruff target version (<a
href="c900ebc528">c900ebc</a>)</li>
<li><strong>package:</strong> mark python 3.13 as supported (<a
href="ef5bc36693">ef5bc36</a>)</li>
<li><strong>project:</strong> add settings file for vscode (<a
href="e3103801d6">e310380</a>)</li>
<li><strong>readme:</strong> fix version rendering on pypi (<a
href="786f9fbdb7">786f9fb</a>)</li>
<li>sync repo (<a
href="7e697f6550">7e697f6</a>)</li>
<li>update SDK settings (<a
href="de22c0ece7">de22c0e</a>)</li>
</ul>
<h3>Documentation</h3>
<ul>
<li>code of conduct (<a
href="efe1af28fb">efe1af2</a>)</li>
<li>readme and license (<a
href="d53eafd104">d53eafd</a>)</li>
</ul>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/meta-llama/llama-api-python/blob/main/CHANGELOG.md">llama-api-client's
changelog</a>.</em></p>
<blockquote>
<h2>0.2.0 (2025-08-07)</h2>
<p>Full Changelog: <a
href="https://github.com/meta-llama/llama-api-python/compare/v0.1.2...v0.2.0">v0.1.2...v0.2.0</a></p>
<h3>Features</h3>
<ul>
<li>clean up environment call outs (<a
href="4afbd01ed7">4afbd01</a>)</li>
<li><strong>client:</strong> support file upload requests (<a
href="ec42e80b62">ec42e80</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<ul>
<li><strong>api:</strong> remove chat completion request model (<a
href="94c4e9fd50">94c4e9f</a>)</li>
<li><strong>client:</strong> don't send Content-Type header on GET
requests (<a
href="efec88aa51">efec88a</a>)</li>
<li><strong>parsing:</strong> correctly handle nested discriminated
unions (<a
href="b6276863be">b627686</a>)</li>
<li><strong>parsing:</strong> ignore empty metadata (<a
href="d6ee85101e">d6ee851</a>)</li>
<li><strong>parsing:</strong> parse extra field types (<a
href="f03ca22860">f03ca22</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li>add examples (<a
href="abfa065721">abfa065</a>)</li>
<li><strong>internal:</strong> bump pinned h11 dep (<a
href="d40e1b1d73">d40e1b1</a>)</li>
<li><strong>internal:</strong> fix ruff target version (<a
href="c900ebc528">c900ebc</a>)</li>
<li><strong>package:</strong> mark python 3.13 as supported (<a
href="ef5bc36693">ef5bc36</a>)</li>
<li><strong>project:</strong> add settings file for vscode (<a
href="e3103801d6">e310380</a>)</li>
<li><strong>readme:</strong> fix version rendering on pypi (<a
href="786f9fbdb7">786f9fb</a>)</li>
<li>sync repo (<a
href="7e697f6550">7e697f6</a>)</li>
<li>update SDK settings (<a
href="de22c0ece7">de22c0e</a>)</li>
</ul>
<h3>Documentation</h3>
<ul>
<li>code of conduct (<a
href="efe1af28fb">efe1af2</a>)</li>
<li>readme and license (<a
href="d53eafd104">d53eafd</a>)</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="7a8c5838af"><code>7a8c583</code></a>
release: 0.2.0</li>
<li><a
href="4f1a04e5c1"><code>4f1a04e</code></a>
chore(internal): fix ruff target version</li>
<li><a
href="06485e995a"><code>06485e9</code></a>
feat(client): support file upload requests</li>
<li><a
href="131b474ad1"><code>131b474</code></a>
chore(project): add settings file for vscode</li>
<li><a
href="ef4cee6d8b"><code>ef4cee6</code></a>
fix(parsing): parse extra field types</li>
<li><a
href="fcbc699718"><code>fcbc699</code></a>
fix(parsing): ignore empty metadata</li>
<li><a
href="b6656cd0b8"><code>b6656cd</code></a>
fix(api): remove chat completion request model</li>
<li><a
href="0deda5590c"><code>0deda55</code></a>
feat: clean up environment call outs</li>
<li><a
href="ecf91026ac"><code>ecf9102</code></a>
fix(client): don't send Content-Type header on GET requests</li>
<li><a
href="0ac6285cbe"><code>0ac6285</code></a>
chore(readme): fix version rendering on pypi</li>
<li>Additional commits viewable in <a
href="https://github.com/meta-llama/llama-api-python/compare/v0.1.2...v0.2.0">compare
view</a></li>
</ul>
</details>
<br />
[](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Bumps
[@radix-ui/react-collapsible](https://github.com/radix-ui/primitives)
from 1.1.11 to 1.1.12.
<details>
<summary>Commits</summary>
<ul>
<li>See full diff in <a
href="https://github.com/radix-ui/primitives/commits">compare
view</a></li>
</ul>
</details>
<br />
[](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Bumps
[eslint-config-prettier](https://github.com/prettier/eslint-config-prettier)
from 10.1.5 to 10.1.8.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/prettier/eslint-config-prettier/releases">eslint-config-prettier's
releases</a>.</em></p>
<blockquote>
<h2>v10.1.8</h2>
<p>republish latest version</p>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/prettier/eslint-config-prettier/compare/v10.1.5...v10.1.8">https://github.com/prettier/eslint-config-prettier/compare/v10.1.5...v10.1.8</a></p>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/prettier/eslint-config-prettier/blob/main/CHANGELOG.md">eslint-config-prettier's
changelog</a>.</em></p>
<blockquote>
<h1>eslint-config-prettier</h1>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="9b0b0a47ec"><code>9b0b0a4</code></a>
fix: release a new latest version</li>
<li>See full diff in <a
href="https://github.com/prettier/eslint-config-prettier/compare/v10.1.5...v10.1.8">compare
view</a></li>
</ul>
</details>
<br />
[](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Bumps
[@radix-ui/react-separator](https://github.com/radix-ui/primitives) from
1.1.6 to 1.1.7.
<details>
<summary>Commits</summary>
<ul>
<li>See full diff in <a
href="https://github.com/radix-ui/primitives/commits">compare
view</a></li>
</ul>
</details>
<br />
[](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Bumps [tailwind-merge](https://github.com/dcastil/tailwind-merge) from
3.3.0 to 3.3.1.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/dcastil/tailwind-merge/releases">tailwind-merge's
releases</a>.</em></p>
<blockquote>
<h2>v3.3.1</h2>
<h3>Bug Fixes</h3>
<ul>
<li>Fix arbitrary value using <code>color-mix()</code> not being
detected as color by <a
href="https://github.com/dcastil"><code>@dcastil</code></a> in <a
href="https://redirect.github.com/dcastil/tailwind-merge/pull/591">dcastil/tailwind-merge#591</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/dcastil/tailwind-merge/compare/v3.3.0...v3.3.1">https://github.com/dcastil/tailwind-merge/compare/v3.3.0...v3.3.1</a></p>
<p>Thanks to <a
href="https://github.com/brandonmcconnell"><code>@brandonmcconnell</code></a>,
<a href="https://github.com/manavm1990"><code>@manavm1990</code></a>,
<a href="https://github.com/langy"><code>@langy</code></a>, <a
href="https://github.com/roboflow"><code>@roboflow</code></a>, <a
href="https://github.com/syntaxfm"><code>@syntaxfm</code></a>, <a
href="https://github.com/getsentry"><code>@getsentry</code></a>, <a
href="https://github.com/codecov"><code>@codecov</code></a>, <a
href="https://github.com/sourcegraph"><code>@sourcegraph</code></a>, a
private sponsor, <a
href="https://github.com/block"><code>@block</code></a> and <a
href="https://github.com/shawt3000"><code>@shawt3000</code></a> for
sponsoring tailwind-merge! ❤️</p>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="40d8feed6a"><code>40d8fee</code></a>
v3.3.1</li>
<li><a
href="429ea54ac8"><code>429ea54</code></a>
add changelog for v3.3.1</li>
<li><a
href="d3df8775cc"><code>d3df877</code></a>
Merge pull request <a
href="https://redirect.github.com/dcastil/tailwind-merge/issues/591">#591</a>
from dcastil/bugfix/590/fix-arbitrary-value-using-col...</li>
<li><a
href="fdd9cdfa14"><code>fdd9cdf</code></a>
add <code>color-mix()</code> to <code>colorFunctionRegex</code></li>
<li><a
href="d49e03a28c"><code>d49e03a</code></a>
add test case for border colors being merged incorrectly</li>
<li><a
href="47155f0ebe"><code>47155f0</code></a>
Merge pull request <a
href="https://redirect.github.com/dcastil/tailwind-merge/issues/585">#585</a>
from dcastil/renovate/all-minor-patch</li>
<li><a
href="2d29675ab0"><code>2d29675</code></a>
Update all non-major dependencies</li>
<li><a
href="c3d7208367"><code>c3d7208</code></a>
Merge pull request <a
href="https://redirect.github.com/dcastil/tailwind-merge/issues/578">#578</a>
from dcastil/dependabot/npm_and_yarn/dot-github/actio...</li>
<li><a
href="527214bf13"><code>527214b</code></a>
Bump undici from 5.28.5 to 5.29.0 in
/.github/actions/metrics-report</li>
<li>See full diff in <a
href="https://github.com/dcastil/tailwind-merge/compare/v3.3.0...v3.3.1">compare
view</a></li>
</ul>
</details>
<br />
[](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Bumps [locust](https://github.com/locustio/locust) from 2.38.0 to
2.39.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/locustio/locust/releases">locust's
releases</a>.</em></p>
<blockquote>
<h2>2.39.0</h2>
<h2>What's Changed</h2>
<ul>
<li>Add MilvusUser and example by <a
href="https://github.com/zhuwenxing"><code>@zhuwenxing</code></a> in <a
href="https://redirect.github.com/locustio/locust/pull/3168">locustio/locust#3168</a></li>
<li>Add SocketIOUser by <a
href="https://github.com/cyberw"><code>@cyberw</code></a> in <a
href="https://redirect.github.com/locustio/locust/pull/3189">locustio/locust#3189</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a
href="https://github.com/zhuwenxing"><code>@zhuwenxing</code></a> made
their first contribution in <a
href="https://redirect.github.com/locustio/locust/pull/3168">locustio/locust#3168</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/locustio/locust/compare/2.38.1...2.39.0">https://github.com/locustio/locust/compare/2.38.1...2.39.0</a></p>
<h2>2.38.1</h2>
<h2>What's Changed</h2>
<ul>
<li>Fix test flakyness and update error message by <a
href="https://github.com/amadeuppereira"><code>@amadeuppereira</code></a>
in <a
href="https://redirect.github.com/locustio/locust/pull/3187">locustio/locust#3187</a></li>
<li>FastHttpUser: Dont send zstd in Accept-Encoding header by <a
href="https://github.com/cyberw"><code>@cyberw</code></a> in <a
href="https://redirect.github.com/locustio/locust/pull/3188">locustio/locust#3188</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/locustio/locust/compare/2.38.0...2.38.1">https://github.com/locustio/locust/compare/2.38.0...2.38.1</a></p>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/locustio/locust/blob/master/CHANGELOG.md">locust's
changelog</a>.</em></p>
<blockquote>
<h1>Detailed changelog</h1>
<p>The most important changes can also be found in <a
href="https://docs.locust.io/en/latest/changelog.html">the
documentation</a>.</p>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="1810fef1ae"><code>1810fef</code></a>
Tiny doc fixes</li>
<li><a
href="48b4dfce8f"><code>48b4dfc</code></a>
Link SocketIOUser from main docs.</li>
<li><a
href="6e4fd7f067"><code>6e4fd7f</code></a>
Merge pull request <a
href="https://redirect.github.com/locustio/locust/issues/3189">#3189</a>
from locustio/Add-SocketioUser</li>
<li><a
href="95eca45476"><code>95eca45</code></a>
better documentation of on_message</li>
<li><a
href="a56ef663af"><code>a56ef66</code></a>
SocketIOUser docs: Link to example on GH</li>
<li><a
href="adaa71b5f9"><code>adaa71b</code></a>
SocketIOUser, add method docstrings and link to python-socketio's
readthedocs</li>
<li><a
href="9fb3ff0f89"><code>9fb3ff0</code></a>
Add testcase for SocketIOUser</li>
<li><a
href="7047247f9d"><code>7047247</code></a>
SocketIOUser: Fix use of environment object. Remove SocketIOClient.</li>
<li><a
href="f8ddc9c798"><code>f8ddc9c</code></a>
rename socketio echo_server</li>
<li><a
href="ae28acf027"><code>ae28acf</code></a>
add contrib dependencies to docs build</li>
<li>Additional commits viewable in <a
href="https://github.com/locustio/locust/compare/2.38.0...2.39.0">compare
view</a></li>
</ul>
</details>
<br />
[](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
# What does this PR do?
This should fix dependabot based on this thread:
https://stackoverflow.com/questions/60201543/dependabot-only-updates-lock-file
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
Handles MCP tool calls in a previous response
Closes#3105
## Test Plan
Made call to create response with tool call, then made second call with
the first linked through previous_response_id. Did not get error.
Also added unit test.
Signed-off-by: Gordon Sim <gsim@redhat.com>
# What does this PR do?
We noticed that when llama-stack is running for a long time, we would
run into database errors when trying to run messages through the agent
(which we configured to persist against postgres), seemingly due to the
database connections being stale or disconnected. This commit adds
`pool_pre_ping=True` to the SQLAlchemy engine creation to help mitigate
this issue by checking the connection before using it, and
re-establishing it if necessary.
More information in:
https://docs.sqlalchemy.org/en/20/core/pooling.html#dealing-with-disconnects
We're also open to other suggestions on how to handle this issue, this
PR is just a suggestion.
## Test Plan
We have not tested it yet (we're in the process of doing that) and we're
hoping it's going to resolve our issue.
# What does this PR do?
Fix broken `package-lock.json` not caught by [github bot in this
commit](7f0b2a8764).
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
NVIDIA asymmetric embedding models (e.g.,
`nvidia/llama-3.2-nv-embedqa-1b-v2`) require an `input_type` parameter
not present in the standard OpenAI embeddings API. This PR adds the
`input_type="query"` as default and updates the documentation to suggest
using the `embedding` API for passage embeddings.
<!-- If resolving an issue, uncomment and update the line below -->
Resolves#2892
## Test Plan
```
pytest -s -v tests/integration/inference/test_openai_embeddings.py --stack-config="inference=nvidia" --embedding-model="nvidia/llama-3.2-nv-embedqa-1b-v2" --env NVIDIA_API_KEY={nvidia_api_key} --env NVIDIA_BASE_URL="https://integrate.api.nvidia.com"
```
# What does this PR do?
This PR adds a step in pre-commit to enforce using `llama_stack` logger.
Currently, various parts of the code base uses different loggers. As a
custom `llama_stack` logger exist and used in the codebase, it is better
to standardize its utilization.
Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
Co-authored-by: Matthew Farrellee <matt@cs.wisc.edu>
# What does this PR do?
Adds npm to pre-commit.yml installation and caches ui
Removes node installation during pre-commit.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
I started this PR trying to unbreak a newly broken test
`test_agent_name`. This test was broken all along but did not show up
because during testing we were pulling the "non-updated" llama stack
client. See this comment:
https://github.com/llamastack/llama-stack/pull/3119#discussion_r2270988205
While fixing this, I encountered a large amount of badness in our CI
workflow definitions.
- We weren't passing `LLAMA_STACK_DIR` or `LLAMA_STACK_CLIENT_DIR`
overrides to `llama stack build` at all in some cases.
- Even when we did, we used `uv run` liberally. The first thing `uv run`
does is "syncs" the project environment. This means, it is going to undo
any mutations we might have done ourselves. But we make many mutations
in our CI runners to these environments. The most important of which is
why `llama stack build` where we install distro dependencies. As a
result, when you tried to run the integration tests, you would see old,
strange versions.
## Test Plan
Re-record using:
```
sh scripts/integration-tests.sh --stack-config ci-tests \
--provider ollama --test-pattern test_agent_name --inference-mode record
```
Then re-run with `--inference-mode replay`. But:
Eventually, this test turned out to be quite flaky for telemetry
reasons. I haven't investigated it for now and just disabled it sadly
since we have a release to push out.
# What does this PR do?
Add CodeScanner implementations
## Test Plan
`SAFETY_MODEL=CodeScanner LLAMA_STACK_CONFIG=starter uv run pytest -v
tests/integration/safety/test_safety.py
--text-model=llama3.2:3b-instruct-fp16
--embedding-model=all-MiniLM-L6-v2 --safety-shield=ollama`
This PR need to land after this
https://github.com/meta-llama/llama-stack/pull/3098
This OpenAI client release
0843a11164
ends up breaking litellm
169a17400f/litellm/types/llms/openai.py (L40)
Update the dependency pin. Also make the imports a bit more defensive
anyhow if something else during `llama stack build` ends up moving
openai to a previous version.
## Test Plan
Run pre-release script integration tests.
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
I noticed somehow
[build_conda_env.sh](https://github.com/llamastack/llama-stack/blob/main/llama_stack/core/build_conda_env.sh)
exists in main branch. We need to kill it to be consistent with
[#2969](https://github.com/llamastack/llama-stack/pull/2969)
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
# What does this PR do?
Update triagers to current state
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
# What does this PR do?
commands where the output is important like `llama stack build
--print-deps-only` (soon to be `llama stack show`) print some log.py
`cprint`'s on _every_ execution of the CLI
for example:
<img width="912" height="331" alt="Screenshot 2025-08-18 at 1 16 30 PM"
src="https://github.com/user-attachments/assets/e5bf18fb-74a1-438c-861a-8a26eea7d014"
/>
the yellow text is likely unnecessary.
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
Small docs change as requested in
https://github.com/llamastack/llama-stack/pull/3160#pullrequestreview-3125038932
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
See comment here:
https://github.com/llamastack/llama-stack/pull/3162#issuecomment-3192859097
-- TL;DR it is quite complex to invoke the recording workflow correctly
for an end developer writing tests. This script simplifies the work.
No more manual GitHub UI navigation!
## Script Functionality
- Auto-detects your current branch and associated PR
- Finds the right repository context (works from forks!)
- Runs the workflow where it can actually commit back
- Validates prerequisites and provides helpful error messages
## How to Use
First ensure you are on the branch which introduced a new test and want
it recorded. **Make sure you have pushed this branch remotely, easiest
is to create a PR.**
```
# Record tests for current branch
./scripts/github/schedule-record-workflow.sh
# Record specific test subdirectories
./scripts/github/schedule-record-workflow.sh --test-subdirs "agents,inference"
# Record with vision tests enabled
./scripts/github/schedule-record-workflow.sh --run-vision-tests
# Record tests matching a pattern
./scripts/github/schedule-record-workflow.sh --test-pattern "test_streaming"
```
## Test Plan
Ran `./scripts/github/schedule-record-workflow.sh -s inference -k
tool_choice` which started
4820409329
which successfully committed recorded outputs.
# What does this PR do?
Recording tests has become a nightmare. This is the first part of making
that process simpler by making it _less_ automatic. I tried to be too
clever earlier.
It simplifies the record-integration-tests workflow to use workflow
dispatch inputs instead of PR labels. No more opaque stuff. Just go to
the GitHub UI and run the workflow with inputs. I will soon add a helper
script for this also.
Other things to aid re-running just the small set of things you need to
re-record:
- Replaces the `test-types` JSON array parameter with a more intuitive
`test-subdirs` comma-separated list. The whole JSON array crap was for
matrix.
- Adds a new `test-pattern` parameter to allow filtering tests using
pytest's `-k` option
## Test Plan
Note that this PR is in a fork not the source repository.
- Replay tests on this PR are green
- Manually
[ran](1699856292)
the replay workflow with a test-subdir and test-pattern filter, worked
- Manually
[ran](4819508034)
the **record** workflow with a simple pattern, it has worked and updated
_this_ PR.
---------
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Replace chat_completion calls with openai_chat_completion to eliminate
dependency on legacy inference APIs.
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
<!-- If resolving an issue, uncomment and update the line below -->
Closes#3067
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
# What does this PR do?
Creates a structured testing documentation section with multiple detailed pages:
- Testing overview explaining the record-replay architecture
- Integration testing guide with practical usage examples
- Record-replay system technical documentation
- Guide for writing effective tests
- Troubleshooting guide for common testing issues
Hopefully this makes things a bit easier.
# What does this PR do?
Updates test recordings.
## Test Plan
Started ollama serving the 3.2:3b model. Then ran the server:
```
LLAMA_STACK_TEST_INFERENCE_MODE=record \
LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings/ \
SQLITE_STORE_DIR=$(mktemp -d) \
OLLAMA_URL=http://localhost:11434 \
llama stack build --template starter --image-type venv --run
```
Then ran the tests which needed recording:
```
pytest -sv tests/integration/agents/test_openai_responses.py \
--stack-config=server:starter \
--text-model ollama/llama3.2:3b-instruct-fp16 -k test_responses_store
```
Then, restarted the server with `LLAMA_STACK_TEST_INFERENCE_MODE=replay`, re-ran the tests and verified they passed.
# What does this PR do?
A _bunch_ on cleanup for the Responses tests.
- Got rid of YAML test cases, moved them to just use simple pydantic models
- Splitting the large monolithic test file into multiple focused test files:
- `test_basic_responses.py` for basic and image response tests
- `test_tool_responses.py` for tool-related tests
- `test_file_search.py` for file search specific tests
- Adding a `StreamingValidator` helper class to standardize streaming response validation
## Test Plan
Run the tests:
```
pytest -s -v tests/integration/non_ci/responses/ \
--stack-config=starter \
--text-model openai/gpt-4o \
--embedding-model=sentence-transformers/all-MiniLM-L6-v2 \
-k "client_with_models"
```
# What does this PR do?
Adds proper streaming events for MCP tool listing (`mcp_list_tools.in_progress` and `mcp_list_tools.completed`). Also refactors things a bit more.
## Test Plan
Verified existing integration tests pass with the refactored code. The test `test_response_streaming_multi_turn_tool_execution` has been updated to check for the new MCP list tools streaming events
# What does this PR do?
Refactors the OpenAI response conversion utilities by moving helper functions from `openai_responses.py` to `utils.py`. Adds unit tests.
# What does this PR do?
Refactors the OpenAI responses implementation by extracting streaming and tool execution logic into separate modules. This improves code organization by:
1. Creating a new `StreamingResponseOrchestrator` class in `streaming.py` to handle the streaming response generation logic
2. Moving tool execution functionality to a dedicated `ToolExecutor` class in `tool_executor.py`
## Test Plan
Existing tests
The OpenAI compatibility layer was incorrectly importing
ChatCompletionMessageToolCallParam instead of the
ChatCompletionMessageFunctionToolCall class. This caused "Cannot
instantiate typing.Union" errors when processing agent requests with
tool calls.
Closes: #3141
Signed-off-by: Derek Higgins <derekh@redhat.com>
# What does this PR do?
Adds content part streaming events to the OpenAI-compatible Responses API to support more granular streaming of response content. This introduces:
1. New schema types for content parts: `OpenAIResponseContentPart` with variants for text output and refusals
2. New streaming event types:
- `OpenAIResponseObjectStreamResponseContentPartAdded` for when content parts begin
- `OpenAIResponseObjectStreamResponseContentPartDone` for when content parts complete
3. Implementation in the reference provider to emit these events during streaming responses. Also emits MCP arguments just like function call ones.
## Test Plan
Updated existing streaming tests to verify content part events are properly emitted
# What does this PR do?
Enhances tool execution streaming by adding support for real-time progress events during tool calls. This implementation adds streaming events for MCP and web search tools, including in-progress, searching, completed, and failed states.
The refactored `_execute_tool_call` method now returns an async iterator that yields streaming events throughout the tool execution lifecycle.
## Test Plan
Updated the integration test `test_response_streaming_multi_turn_tool_execution` to verify the presence and structure of new streaming events, including:
- Checking for MCP in-progress and completed events
- Verifying that progress events contain required fields (item_id, output_index, sequence_number)
- Ensuring completed events have the necessary sequence_number field
# What does this PR do?
To be compliant with model policies for LLAMA, just return the
categories as is from provider, we will lose the OAI compat in
moderations api response.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
`SAFETY_MODEL=llama-guard3:8b LLAMA_STACK_CONFIG=starter uv run pytest
-v tests/integration/safety/test_safety.py
--text-model=llama3.2:3b-instruct-fp16
--embedding-model=all-MiniLM-L6-v2 --safety-shield=ollama`
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
The purpose of this PR is to eliminate hardcoded status codes in
server's responses and replace it by `httpx.codes` functionality for
better consistency across the whole project and improvement in code
readability.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Run `./scripts/unit-tests.sh`
**Description:**
The standard markdown [!NOTE] format is not supported on Sphinx
generated documentation, replacing those instances. Also updating other
Notes, Tips and Warning blocks throughout the source docs
WIP: Working to update the provider code gen
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
The purpose of this PR is to make the behavior DELETE API endpoints be
consistent with standard RESTful conventions and eliminate confusion for
API consumers.
Old Behavior
```
HTTP Status: 200 OK
Response Body: null
```
Eg. `curl -X DELETE http://localhost:8321/v1/shields/test-shield`
`null% `
`INFO 2025-08-12 16:11:57,932 console_span_processor:65 telemetry:
15:11:57.929 [INFO] ::1:59805 - "DELETE /v1/shields/test-shield
HTTP/1.1" 200 `
Updated Behavior
```
HTTP Status: 204 No Content
Response Body: empty (no body)
```
Eg. `curl -X DELETE http://localhost:8321/v1/shields/test-shield`
`INFO 2025-08-12 16:18:16,645 console_span_processor:62 telemetry:
15:18:16.637 [INFO] ::1:60283 - "DELETE /v1/shields/test-shield
HTTP/1.1" 204 `
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#3090
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Run `./scripts/unit-tests.sh`
# What does this PR do?
1. Updates `AgentPersistence.list_sessions()` to properly filter out
`Turn` keys from `Session` keys.
2. Adds a suite of unit tests to confirm the `list_sessions()` behavior
and tests the failed sample in
https://github.com/meta-llama/llama-stack/issues/3048
## Fixes https://github.com/meta-llama/llama-stack/issues/3048
## Test Plan
Unit tests added.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR changes the group name from github.ref to
github.even.pull_request_number. The reason for this is that github.ref
does not act as a unique identifier in the pull_request_target event and
only is unique in pull_request. The github action was getting canceled
was because the group name was not unique in the concurrency section.
<!-- If resolving an issue, uncomment and update the line below -->
Closes#3102
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
To test this I have created a fake github action and ran it trough act
to see what the github.ref variable produced and what alternatives can
be used. This confirmed that the github.ref was not unique and that
github.event.pull_request_number is unique to the PR.
Some fixes to MCP tests. And a bunch of fixes for Vector providers.
I also enabled a bunch of Vector IO tests to be used with
`LlamaStackLibraryClient`
## Test Plan
Run Responses tests with llama stack library client:
```
pytest -s -v tests/integration/non_ci/responses/ --stack-config=server:starter \
--text-model openai/gpt-4o \
--embedding-model=sentence-transformers/all-MiniLM-L6-v2 \
-k "client_with_models"
```
Do the same with `-k openai_client`
The rest should be taken care of by CI.
Well our Responses tests use it so we better include it in the API, no?
I discovered it because I want to make sure `llama-stack-client` can be
used always instead of `openai-python` as the client (we do want to be
_truly_ compatible.)
# What does this PR do?
the minimum python version for the project was bumped to 3.12 a couple
months ago, but there remains some artifacts in the repo suggesting we
support >=3.10
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR addresses an issue where `PromptGuardSafetyImpl` was an
incomplete implementation of an abstract class. The class was missing
the required run_moderation method from its parent interface.
Currently, running `pre-commit` locally fails with the error below.
```
llama_stack/providers/inline/safety/prompt_guard/__init__.py:15: error: Cannot instantiate abstract class "PromptGuardSafetyImpl" with abstract attribute "run_moderation" [abstract]
Found 1 error in 1 file (checked 410 source files)
```
This PR fixes the issue as follows
- Added the missing run_moderation method to PromptGuardSafetyImpl
- Method raises NotImplementedError with appropriate message indicating
this functionality is not implemented for PromptGuard
- This allows the class to be properly instantiated while clearly
indicating the limitation
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
Using commas is much more shell-friendly. A semi-colon is a statement
delimiter and must be escaped.
This change is backwards incompatible but I imagine not many people are
using this. I could be wrong. Looking for feedback.
# What does this PR do?
- Adds documentation on how to contribute a Vector DB provider.
- Updates the testing section to be a little friendlier to navigate.
- Also added new shortcut for search so that `/` and `⌘ K` or `ctrl+K`
trigger search
<img width="1903" height="1346" alt="Screenshot 2025-08-11 at 10 10
12 AM"
src="https://github.com/user-attachments/assets/6995b3b8-a2ab-4200-be72-c5b03a784a29"
/>
<img width="1915" height="1438" alt="Screenshot 2025-08-11 at 10 10
25 AM"
src="https://github.com/user-attachments/assets/1f54d30e-5be1-4f27-b1e9-3c3537dcb8e9"
/>
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR adds static type coverage to `llama-stack`
Part of https://github.com/meta-llama/llama-stack/issues/2647
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
# What does this PR do?
This updates the sidebar to look a little more like other popular ones.
<img width="1913" height="1352" alt="Screenshot 2025-08-08 at 11 25
31 PM"
src="https://github.com/user-attachments/assets/00738412-1101-48ec-8864-cde4a8733ec1"
/>
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
- Add new Vertex AI remote inference provider with litellm integration
- Support for Gemini models through Google Cloud Vertex AI platform
- Uses Google Cloud Application Default Credentials (ADC) for
authentication
- Added VertexAI models: gemini-2.5-flash, gemini-2.5-pro,
gemini-2.0-flash.
- Updated provider registry to include vertexai provider
- Updated starter template to support Vertex AI configuration
- Added comprehensive documentation and sample configuration
<!-- If resolving an issue, uncomment and update the line below -->
relates to https://github.com/meta-llama/llama-stack/issues/2747
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Eran Cohen <eranco@redhat.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
# What does this PR do?
Updates READMe to add
1. GitHub badge highlighting Llama Stack as #1 Repo of the Day
2. GitHub Star History (cumulative stars chart)
3. Contributor shout out
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
Update Milvus doc on using search modes.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
PR adds Flash-Lite 2.0 and 2.5 models to the Gemini inference provider
Closes#3046
## Test Plan
I was not able to locate any existing test for this provider, so I
performed manual testing. But the change is really trivial and
straightforward.
# What does this PR do?
This PR updates the UI to create new:
1. `/files/{file_id}`
2. `files/{file_id}/contents`
3. `files/{file_id}/contents/{content_id}`
The list of files are clickable which brings the user to the FIles
Detail page
The File Details page shows all of the content
The content details page shows the individual chunk/content parsed
These only use our existing OpenAI compatible APIs. I have a separate
branch where I expose the embedding and the portal is correctly
populated. I included the FE rendering code for that in this PR.
1. `vector-stores/{vector_store_id}/files/{file_id}`
<img width="1913" height="1351" alt="Screenshot 2025-08-06 at 10 20
12 PM"
src="https://github.com/user-attachments/assets/08010d5e-60c8-4bd9-9f3e-a2731ed1ad55"
/>
2. `vector-stores/{vector_store_id}/files/{file_id}/contents`
<img width="1920" height="1272" alt="Screenshot 2025-08-06 at 10 21
23 PM"
src="https://github.com/user-attachments/assets/3b91e67b-5d64-4fe6-91b6-18f14587e850"
/>
3.
`vector-stores/{vector_store_id}/files/{file_id}/contents/{content_id}`
<img width="1916" height="1273" alt="Screenshot 2025-08-06 at 10 21
45 PM"
src="https://github.com/user-attachments/assets/d38ca996-e8d9-460c-9e39-7ff0cb5ec0dd"
/>
## Test Plan
I tested this locally and reviewed the code. I generated a significant
share of the code with Claude and some manual intervention. After this,
I'll begin adding tests to the UI.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This PR kills the verifications infrastructure which is no longer used.
It was relocated to the `llama-stack-evals`
(https://github.com/meta-llama/llama-stack-evals) repository previously.
Responses tests used this infrastructure but that wasn't quite
necessary, just a little useful back when @bbrownin introduced the
tests. On Discord, we agreed that tests can be moved to our regular
integrations test infra.
## Test Plan
Some tests currently do fail (although they run!) I will send a
follow-up PR which makes them all pass.
# What does this PR do?
`AgentEventLogger` only supports streaming responses, so I suggest
adding a comment near the bottom of `demo_script.py` letting the user
know this, e.g., if they change the `stream` value to `False` in the
call to `create_turn`, they need to comment out the logging lines.
See https://github.com/llamastack/llama-stack-client-python/issues/15
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
---------
Signed-off-by: Dean Wampler <dean.wampler@ibm.com>
# What does this PR do?
This PR implements hybrid search for Milvus DB based on the inbuilt
milvus support.
To test:
```
pytest tests/unit/providers/vector_io/remote/test_milvus.py -v -s
--tb=long --disable-warnings --asyncio-mode=auto
```
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
# What does this PR do?
Adds a blurb to the `CONTRIBUTING.md` encouraging the use of the
standardized custom exception classes for resources where applicable
Relates to #2379
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
This PR adds Open AI Compatible moderations api. Currently only
implementing for llama guard safety provider
Image support, expand to other safety providers and Deprecation of
run_shield will be next steps.
## Test Plan
Added 2 new tests for safe/ unsafe text prompt examples for the new open
ai compatible moderations api usage
`SAFETY_MODEL=llama-guard3:8b LLAMA_STACK_CONFIG=starter uv run pytest
-v tests/integration/safety/test_safety.py
--text-model=llama3.2:3b-instruct-fp16
--embedding-model=all-MiniLM-L6-v2 --safety-shield=ollama`
(Had some issue with previous PR
https://github.com/meta-llama/llama-stack/pull/2994 while updating and
accidentally close it , reopened new one )
# What does this PR do?
I found a few issues while adding new metrics for various APIs:
currently metrics are only propagated in `chat_completion` and
`completion`
since most providers use the `openai_..` routes as the default in
`llama-stack-client inference chat-completion`, metrics are currently
not working as expected.
in order to get them working the following had to be done:
1. get the completion as usual
2. use new `openai_` versions of the metric gathering functions which
use `.usage` from the `OpenAI..` response types to gather the metrics
which are already populated.
3. define a `stream_generator` which counts the tokens and computes the
metrics (only for stream=True)
5. add metrics to response
NOTE: I could not add metrics to `openai_completion` where stream=True
because that ONLY returns an `OpenAICompletion` not an AsyncGenerator
that we can manipulate.
acquire the lock, and add event to the span as the other `_log_...`
methods do
some new output:
`llama-stack-client inference chat-completion --message hi`
<img width="2416" height="425" alt="Screenshot 2025-07-16 at 8 28 20 AM"
src="https://github.com/user-attachments/assets/ccdf1643-a184-4ddd-9641-d426c4d51326"
/>
and in the client:
<img width="763" height="319" alt="Screenshot 2025-07-16 at 8 28 32 AM"
src="https://github.com/user-attachments/assets/6bceb811-5201-47e9-9e16-8130f0d60007"
/>
these were not previously being recorded nor were they being printed to
the server due to the improper console sink handling
---------
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
Remove pure venv (without uv) references in docs
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
# What does this PR do?
1. Introduce new base custom exception class `ResourceNotFoundError`
2. All other "not found" exception classes now inherit from
`ResourceNotFoundError`
Closes#3030
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
This PR adds a minimum version `0.7.0` to the project. The diff issue
happens because an `upload-time` field in the `uv.lock` file did not
exist in older uv versions (pre `0.6.15`). This effectively prevents
large diffs in PRs from devs that use older versions of uv.
Closes#2887
---------
Co-authored-by: Charlie Doern <charlie@doern.me>
A bunch of miscellaneous cleanup focusing on tests, but ended up
speeding up starter distro substantially.
- Pulled llama stack client init for tests into `pytest_sessionstart` so
it does not clobber output
- Profiling of that told me where we were doing lots of heavy imports
for starter, so lazied them
- starter now starts 20seconds+ faster on my Mac
- A few other smallish refactors for `compat_client`
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
Extend the Shields Protocol and implement the capability to unregister
previously registered shields and CLI for shields management.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#2581
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
First of, test API for shields
1. Install and start Ollama:
`ollama serve`
2. Pull Llama Guard Model in Ollama:
`ollama pull llama-guard3:8b`
3. Configure env variables:
```
export ENABLE_OLLAMA=ollama
export OLLAMA_URL=http://localhost:11434
```
4. Build Llama Stack distro:
`llama stack build --template starter --image-type venv `
5. Start Llama Stack server:
`llama stack run starter --port 8321`
6. Check if Ollama model is available:
`curl -X GET http://localhost:8321/v1/models | jq '.data[] |
select(.provider_id=="ollama")'`
7. Register a new Shield using Ollama provider:
```
curl -X POST http://localhost:8321/v1/shields \
-H "Content-Type: application/json" \
-d '{
"shield_id": "test-shield",
"provider_id": "llama-guard",
"provider_shield_id": "ollama/llama-guard3:8b",
"params": {}
}'
```
`{"identifier":"test-shield","provider_resource_id":"ollama/llama-guard3:8b","provider_id":"llama-guard","type":"shield","owner":{"principal":"","attributes":{}},"params":{}}%
`
8. Check if shield was registered:
`curl -X GET http://localhost:8321/v1/shields/test-shield`
`{"identifier":"test-shield","provider_resource_id":"ollama/llama-guard3:8b","provider_id":"llama-guard","type":"shield","owner":{"principal":"","attributes":{}},"params":{}}%
`
9. Run shield:
```
curl -X POST http://localhost:8321/v1/safety/run-shield \
-H "Content-Type: application/json" \
-d '{
"shield_id": "test-shield",
"messages": [
{
"role": "user",
"content": "How can I hack into someone computer?"
}
],
"params": {}
}'
```
`{"violation":{"violation_level":"error","user_message":"I can't answer
that. Can I help with something
else?","metadata":{"violation_type":"S2"}}}% `
10. Unregister shield:
`curl -X DELETE http://localhost:8321/v1/shields/test-shield`
`null% `
11. Verify shield was deleted:
`curl -X GET http://localhost:8321/v1/shields/test-shield`
`{"detail":"Invalid value: Shield 'test-shield' not found"}%`
All tests passed ✅
```
========================================================================== 430 passed, 194 warnings in 19.54s ==========================================================================
/Users/iamiller/GitHub/llama-stack/.venv/lib/python3.12/site-packages/litellm/llms/custom_httpx/async_client_cleanup.py:78: RuntimeWarning: coroutine 'close_litellm_async_clients' was never awaited
loop.close()
RuntimeWarning: Enable tracemalloc to get the object allocation traceback
Wrote HTML report to htmlcov-3.12/index.html
```
# What does this PR do?
1. Creates a new `SessionNotFoundError` class
2. Implements the new class where appropriate
Relates to #2379
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
1. Creates a new `ToolGroupNotFoundError` class
2. Implements the new class where appropriate
Relates to #2379
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
Bumps [openai](https://github.com/openai/openai-python) from 1.97.1 to
1.98.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/openai/openai-python/releases">openai's
releases</a>.</em></p>
<blockquote>
<h2>v1.98.0</h2>
<h2>1.98.0 (2025-07-30)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v1.97.2...v1.98.0">v1.97.2...v1.98.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> manual updates (<a
href="88a8036c5e">88a8036</a>)</li>
</ul>
<h2>v1.97.2</h2>
<h2>1.97.2 (2025-07-30)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v1.97.1...v1.97.2">v1.97.1...v1.97.2</a></p>
<h3>Chores</h3>
<ul>
<li><strong>client:</strong> refactor streaming slightly to better
future proof it (<a
href="71c0c74713">71c0c74</a>)</li>
<li><strong>project:</strong> add settings file for vscode (<a
href="29c22c90fd">29c22c9</a>)</li>
</ul>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/openai/openai-python/blob/main/CHANGELOG.md">openai's
changelog</a>.</em></p>
<blockquote>
<h2>1.98.0 (2025-07-30)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v1.97.2...v1.98.0">v1.97.2...v1.98.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> manual updates (<a
href="88a8036c5e">88a8036</a>)</li>
</ul>
<h2>1.97.2 (2025-07-30)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v1.97.1...v1.97.2">v1.97.1...v1.97.2</a></p>
<h3>Chores</h3>
<ul>
<li><strong>client:</strong> refactor streaming slightly to better
future proof it (<a
href="71c0c74713">71c0c74</a>)</li>
<li><strong>project:</strong> add settings file for vscode (<a
href="29c22c90fd">29c22c9</a>)</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="a3315d9fcc"><code>a3315d9</code></a>
release: 1.98.0 (<a
href="https://redirect.github.com/openai/openai-python/issues/2503">#2503</a>)</li>
<li><a
href="48188cc8d5"><code>48188cc</code></a>
release: 1.97.2 (<a
href="https://redirect.github.com/openai/openai-python/issues/2494">#2494</a>)</li>
<li>See full diff in <a
href="https://github.com/openai/openai-python/compare/v1.97.1...v1.98.0">compare
view</a></li>
</ul>
</details>
<br />
[](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
As the title says. Distributions is in, Templates is out.
`llama stack build --template` --> `llama stack build --distro`. For
backward compatibility, the previous option is kept but results in a
warning.
Updated `server.py` to remove the "config_or_template" backward
compatibility since it has been a couple releases since that change.
# What does this PR do?
Implement vector store search test
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
```
pytest tests/integration/vector_io/test_openai_vector_stores.py::test_openai_vector_store_search_modes --stack-config=http://localhost:8321 --embedding-model=all-MiniLM-L6-v2 -v
```
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
# What does this PR do?
Remove score_threshold based check from `OpenAIVectorStoreMixin`
Closes: https://github.com/meta-llama/llama-stack/issues/3018
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR is responsible for removal of Conda support in Llama Stack
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#2539
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
# What does this PR do?
closes#2995
update SambaNovaInferenceAdapter to efficiently use LiteLLMOpenAIMixin
## Test Plan
```
$ uv run pytest -s -v tests/integration/inference --stack-config inference=sambanova --text-model sambanova/Meta-Llama-3.1-8B-Instruct
...
======================== 10 passed, 84 skipped, 3 xfailed, 51 warnings in 8.14s ========================
```
# What does this PR do?
Update README for supported DBs
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
Adds support to Vector store Open AI APIs in Qdrant.
<!-- If resolving an issue, uncomment and update the line below -->
Closes#2463
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
Co-authored-by: ehhuang <ehhuang@users.noreply.github.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
# What does this PR do?
This should be more robust as sometimes its run without running build
first.
## Test Plan
OLLAMA_URL=http://localhost:11434 LLAMA_STACK_TEST_INFERENCE_MODE=replay
LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings
LLAMA_STACK_CONFIG=server:starter uv run --with pytest-repeat pytest
tests/integration/telemetry
--text-model="ollama/llama3.2:3b-instruct-fp16" -vvs
# What does this PR do?
This PR (1) enables the files API for Weaviate and (2) enables
integration tests for Weaviate, which adds a docker container to the
github action.
This PR also handles a couple of edge cases for in creating the
collection and ensuring the tests all pass.
## Test Plan
CI enabled
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
We are going to split record and replay workflows completely to simplify
the concurrency key design.
We can add vision tests by just adding to our matrix.
# What does this PR do?
Improve user experience by providing specific guidance when no API key
is available, showing both provider data header and config options with
the correct field name for each provider.
Also adds comprehensive test coverage for API key resolution scenarios.
addresses #2990 for providers using litellm openai mixin
## Test Plan
`./scripts/unit-tests.sh
tests/unit/providers/inference/test_litellm_openai_mixin.py`
This PR significantly refactors the Integration Tests workflow. The main
goal behind the PR was to enable recording of vision tests which were
never run as part of our CI ever before. During debugging, I ended up
making several other changes refactoring and hopefully increasing the
robustness of the workflow.
After doing the experiments, I have updated the trigger event to be
`pull_request_target` so this workflow can get write permissions by
default but it will run with source code from the base (main) branch in
the source repository only. If you do change the workflow, you'd need to
experiment using the `workflow_dispatch` triggers. This should not be
news to anyone using Github Actions (except me!)
It is likely to be a little rocky though while I learn more about GitHub
Actions, etc. Please be patient :)
---------
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
# What does this PR do?
I realized that when a new PR is opened, the integration tests aren't
triggering (or aren't always?) since the replay logic was introduced
amend the concurrency logic a bit to trigger on opened PRs
---------
Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
get_vector_db() will raise an exception if a vector store won't be
returned
client handling is redundant
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
It looks like the coverage badge is still present in the README. This PR
removes it.
For more context: https://github.com/meta-llama/llama-stack/pull/2950
**Description**
This PR adjusts the external providers documentation to align with the
new providers format. Splits up sections into the existing external
providers and how to create them as well.
<img width="1049" height="478" alt="Screenshot 2025-07-31 at 9 48 26 AM"
src="https://github.com/user-attachments/assets/f13599cb-2fd1-4e57-8ca9-27b067264e33"
/>
Open to feedback and adjusting titles
What does this PR do?
This PR adds support for Direct Preference Optimization (DPO) training
via the existing HuggingFace inline provider. It introduces a new DPO
training recipe, config schema updates, dataset integration, and
end-to-end testing to support preference-based fine-tuning with TRL.
Test Plan
Added integration test:
tests/integration/post_training/test_post_training.py::TestPostTraining::test_preference_optimize
Ran tests on both CPU and CUDA environments
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-43-83.ec2.internal>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
I've been tinkering a little with a simple chat playground in the UI, so
I'm opening the PR with what's kind of a WIP.
If you look at the first commit, that includes the big part of the
changes. The rest of the files changed come from adding installing the
`shadcn` components.
Note this is missing a lot; e.g.,
- sessions
- document upload
- audio (the shadcn components install these by default from
https://shadcn-chatbot-kit.vercel.app/docs/components/chat)
I still need to wire up a lot more to make it actually fully functional
but it does basic chat using the LS Typescript Client.
Basic demo:
<img width="1329" height="1430" alt="Image"
src="https://github.com/user-attachments/assets/917a2096-36d4-4925-b83b-f1f2cda98698"
/>
<img width="1319" height="1424" alt="Image"
src="https://github.com/user-attachments/assets/fab1583b-1c72-4bf3-baf2-405aee13c6bb"
/>
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This PR focuses on improving the developer experience by adding
comprehensive docstrings to the API data models across the Llama Stack.
These docstrings provide detailed explanations for each model and its
fields, making the API easier to understand and use.
**Key changes:**
- **Added Docstrings:** Added reST formatted docstrings to Pydantic
models in the `llama_stack/apis/` directory. This includes models for:
- Agents (`agents.py`)
- Benchmarks (`benchmarks.py`)
- Datasets (`datasets.py`)
- Inference (`inference.py`)
- And many other API modules.
- **OpenAPI Spec Update:** Regenerated the OpenAPI specification
(`docs/_static/llama-stack-spec.yaml` and
`docs/_static/llama-stack-spec.html`) to include the new docstrings.
This will be reflected in the API documentation, providing richer
information to users.
**Impact:**
- Developers using the Llama Stack API will have a better understanding
of the data structures.
- The auto-generated API documentation is now more informative.
---------
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
1. Creates a new `VectorStoreNotFoundError` class
2. Implements the new class where appropriate
Relates to #2379
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
1. Adds a broad schema for custom exception classes in the Llama Stack
project
2. Creates a new `DatasetNotFoundError` class
3. Implements the new class where appropriate
Relates to #2379
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR fixes the following error in unit test that was running on up to
date main branch:
```
FAILED tests/unit/distribution/test_inference_recordings.py::TestInferenceRecording::test_recording_mode - ModuleNotFoundError: No module named 'ollama'
FAILED tests/unit/distribution/test_inference_recordings.py::TestInferenceRecording::test_replay_mode - ModuleNotFoundError: No module named 'ollama'
FAILED tests/unit/distribution/test_inference_recordings.py::TestInferenceRecording::test_replay_missing_recording - ModuleNotFoundError: No module named 'ollama'
FAILED tests/unit/distribution/test_inference_recordings.py::TestInferenceRecording::test_embeddings_recording - ModuleNotFoundError: No module named 'ollama'
=============================== 4 failed, 499 passed, 198 warnings in 34.50s ================================
```
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Run `./scripts/unit-tests.sh`
# What does this PR do?
1. Creates a new `ModelNotFoundError` class
2. Implements the new class where appropriate
Relates to #2379
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
We want to avoid re-triggering the workflow when random other labels are
added (e.g., `meta-cla`, etc.) Also no point restarting the workflow
when someone _unlabels_.
**Description**
This PR removes some of the warnings when uv builds the docs
- Errors appear when generating docs about .md files not appearing in
toctree. ~~Adding content to the `providers-gen.py ` file that adds `---
orphan: true ---` to to each file.~~. Added a toctree generator to the
`providers-gen.py` file, this gets rid of the errors in the builds.
- Deletes the `_openai_compat` files, extension of PR #2849
- Adds the `files` APIs section to the `providers` toctree on the index
page
- Manually adds the `--- orphan: true ---` to the advanced apis. Ill try
to find a way to modify the providers code gen so it automatically adds
it, but this fixes the errors.
- Adds the `testing.md` to the `contributing` toctree
- Adds `starting_llama_stack_server.md` to `distributions` toctree
There are some other warnings im still looking at but this PR gets rid
of most of the toctree errors
Theres also an issue with the actual distribution-codegen that I can
investigate in another PR. Opened a bug for it here #2873
We tried to always keep Ollama enabled. However doing so makes the
provider implementation half-assed -- should it error when it cannot
connect to Ollama or not? What happens during periodic model refresh?
Etc. Instead do the same thing we do for vLLM -- use the `OLLAMA_URL` to
conditionally enable the provider.
## Test Plan
Run `uv run llama stack build --template starter --image-type venv
--run` with and without `OLLAMA_URL` set. Verify using
`llama-stack-client provider list` that ollama is correctly enabled.
# What does this PR do?
- Initialize route_impls to None in constructor to prevent
AttributeError
- Consolidate initialization checks to single point in request() method
- Improve error message to be more helpful ("Please call initialize()
first")
- Add comprehensive test suite to prevent regressions
The library client now has better error handling when users forget to
call initialize(), showing a clear ValueError instead of confusing
AttributeError. All initialization validation is now centralized in the
request() method, with internal methods (_call_non_streaming,
_call_streaming, _convert_body) relying on this single check for
cleaner, more maintainable code.
closes#2943
## Test Plan
`./scripts/unit-tests.sh`
A couple of important updates:
- When recording tests, we cannot be generating a matrix because all the
independent recordings will conflict.
- In fact, we just don't need a matrix on test types any more because
things are very fast and the overhead of `llama stack build` and setting
up `uv` etc. is much more.
- Refactored the running of tests into an independent action
This PR makes setting up Ollama optional for CI. By default, we use
`replay` mode for inference requests and use the stored results from the
`tests/integration/recordings/` directory.
Every so often, users will update tests which will need us to re-record.
To do this, we check for the existence of a label `re-record-tests` on
the PR. If detected,
- ollama is spun up
- inference mode is set to record
- after the tests are done, if any new changes are detected, they are
pushed back to the PR
## Test Plan
This is GitHub CI. Gotta test it live.
Continuing with https://github.com/meta-llama/llama-stack/pull/2952
This also includes a "fix" to inference store related tests so that we
pull a large number of inference responses from the DB so as to always
find the one we just wrote.
Post training tests need _much_ better thinking before we can re-enable
them to be run on every single PR. Running periodically should be
approached only when it is shown that the tests are reliable and as
light-weight as can be; otherwise, it is just kicking the can down the
road.
Continue to build on top of
https://github.com/meta-llama/llama-stack/pull/2941
## Test Plan
Run server with `LLAMA_STACK_TEST_INFERENCE_MODE=record` and then run
the integration tests with `--stack-config=server:starter`. Then restart
the server with `LLAMA_STACK_TEST_INFERENCE_MODE=replay` and re-run the
tests. Verify that no request hit Ollama at any point.
# What does this PR do?
when --image-name is not provided the build script default to the
image_name in the config, this makes sure the same is done for the run
script
## Test Plan
llama stack build w/o --image-name
At the moment, the code coverage action has just been failing. It's
misleading when interpreting the status badge on the main branch.
https://github.com/meta-llama/llama-stack/actions/workflows/coverage-badge.yml
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Implements a comprehensive recording and replay system for inference API
calls that eliminates dependency on online inference providers during
testing. The system treats inference as deterministic by recording real
API responses and replaying them in subsequent test runs. Applies to
OpenAI clients (which should cover many inference requests) as well as
Ollama AsyncClient.
For storing, we use a hybrid system: Sqlite for fast lookups and JSON
files for easy greppability / debuggability.
As expected, tests become much much faster (more than 3x in just
inference testing.)
```bash
LLAMA_STACK_TEST_INFERENCE_MODE=record LLAMA_STACK_TEST_RECORDING_DIR=<...> \
uv run pytest -s -v tests/integration/inference \
--stack-config=starter \
-k "not( builtin_tool or safety_with_image or code_interpreter or test_rag )" \
--text-model="ollama/llama3.2:3b-instruct-fp16" \
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
```
```bash
LLAMA_STACK_TEST_INFERENCE_MODE=replay LLAMA_STACK_TEST_RECORDING_DIR=<...> \
uv run pytest -s -v tests/integration/inference \
--stack-config=starter \
-k "not( builtin_tool or safety_with_image or code_interpreter or test_rag )" \
--text-model="ollama/llama3.2:3b-instruct-fp16" \
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
```
- `LLAMA_STACK_TEST_INFERENCE_MODE`: `live` (default), `record`, or
`replay`
- `LLAMA_STACK_TEST_RECORDING_DIR`: Storage location (must be specified
for record or replay modes)
# What does this PR do?
- Change max_seq_length to max_length in SFTConfig constructor
- TRL deprecated max_seq_length in Feb 2024 and removed it in v0.20.0
- Reference: https://github.com/huggingface/trl/pull/2895
This resolves the SFT training failure in CI tests
# What does this PR do?
OpenAI Chat Completions supports passing a base64 encoded PDF file to a
model, but Llama Stack currently does not allow for this behavior. This
PR extends our implementation of the OpenAI API spec to change that.
Closes#2129
## Test Plan
A new functional test has been added to test the validity of such a
request
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
Updates provider template from outdated `ollama` to `starter`
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes: #2839
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
2025-07-28 15:35:26 -07:00
779 changed files with 82704 additions and 21565 deletions
Llama Stack uses GitHub Actions for Continous Integration (CI). Below is a table detailing what CI the project includes and the purpose.
Llama Stack uses GitHub Actions for Continuous Integration (CI). Below is a table detailing what CI the project includes and the purpose.
| Name | File | Purpose |
| ---- | ---- | ------- |
| Update Changelog | [changelog.yml](changelog.yml) | Creates PR for updating the CHANGELOG.md |
| Coverage Badge | [coverage-badge.yml](coverage-badge.yml) | Creates PR for updating the code coverage badge |
| Installer CI | [install-script-ci.yml](install-script-ci.yml) | Test the installation script |
| Integration Auth Tests | [integration-auth-tests.yml](integration-auth-tests.yml) | Run the integration test suite with Kubernetes authentication |
| SqlStore Integration Tests | [integration-sql-store-tests.yml](integration-sql-store-tests.yml) | Run the integration test suite with SqlStore |
| Integration Tests | [integration-tests.yml](integration-tests.yml) | Run the integration test suite with Ollama |
| Integration Tests (Replay) | [integration-tests.yml](integration-tests.yml) | Run the integration test suite from tests/integration in replay mode |
| Vector IO Integration Tests | [integration-vector-io-tests.yml](integration-vector-io-tests.yml) | Run the integration test suite with various VectorIO providers |
| Pre-commit | [pre-commit.yml](pre-commit.yml) | Run pre-commit checks |
| Test Llama Stack Build | [providers-build.yml](providers-build.yml) | Test llama stack build |
| Python Package Build Test | [python-build-test.yml](python-build-test.yml) | Test building the llama-stack PyPI project |
| Integration Tests (Record) | [record-integration-tests.yml](record-integration-tests.yml) | Run the integration test suite from tests/integration |
| Check semantic PR titles | [semantic-pr.yml](semantic-pr.yml) | Ensure that PR titles follow the conventional commit spec |
| Close stale issues and PRs | [stale_bot.yml](stale_bot.yml) | Run the Stale Bot action |
| Test External Providers Installed via Module | [test-external-provider-module.yml](test-external-provider-module.yml) | Test External Provider installation via Python module |
| Test External API and Providers | [test-external.yml](test-external.yml) | Test the External API and Provider mechanisms |
| UI Tests | [ui-unit-tests.yml](ui-unit-tests.yml) | Run the UI test suite |
| Unit Tests | [unit-tests.yml](unit-tests.yml) | Run the unit test suite |
| Update ReadTheDocs | [update-readthedocs.yml](update-readthedocs.yml) | Update the Llama Stack ReadTheDocs site |
# npm error `npm ci` can only install packages when your package.json and package-lock.json or npm-shrinkwrap.json are in sync. Please update your lock file with `npm install` before continuing.
# npm error Invalid: lock file's llama-stack-client@0.2.17 does not satisfy llama-stack-client@0.2.18
# ui-prettier and ui-eslint are disabled until we can avoid `npm ci`, which is slow and may fail -
# npm error `npm ci` can only install packages when your package.json and package-lock.json or npm-shrinkwrap.json are in sync. Please update your lock file with `npm install` before continuing.
# npm error Invalid: lock file's llama-stack-client@0.2.17 does not satisfy llama-stack-client@0.2.18
# and until we have infra for installing prettier and next via npm -
# Lint UI code with ESLint.....................................................Failed
# - hook id: ui-eslint
# - exit code: 127
# > ui@0.1.0 lint
# > next lint --fix --quiet
# sh: line 1: next: command not found
#
# - id: ui-prettier
# name: Format UI code with Prettier
# entry: bash -c 'cd llama_stack/ui && npm ci && npm run format'
echo "::error file=$file,line=$line_num::Do not use 'import logging' or 'from logging import' in $file. Use the custom log instead: from llama_stack.log import get_logger; logger = get_logger(). If direct logging is truly needed, add:# allow-direct-logging"
done <<< "$matches"
exit 1
fi
exit 0
ci:
autofix_commit_msg:🎨 [pre-commit.ci] Auto format from pre-commit.com hooks
@ -451,7 +451,7 @@ GenAI application developers need more than just an LLM - they need to integrate
Llama Stack was created to provide developers with a comprehensive and coherent interface that simplifies AI application development and codifies best practices across the Llama ecosystem. Since our launch in September 2024, we have seen a huge uptick in interest in Llama Stack APIs by both AI developers and from partners building AI services with Llama models. Partners like Nvidia, Fireworks, and Ollama have collaborated with us to develop implementations across various APIs, including inference, memory, and safety.
With Llama Stack, you can easily build a RAG agent which can also search the web, do complex math, and custom tool calling. You can use telemetry to inspect those traces, and convert telemetry into evals datasets. And with Llama Stack’s plugin architecture and prepackage distributions, you choose to run your agent anywhere - in the cloud with our partners, deploy your own environment using virtualenv, conda, or Docker, operate locally with Ollama, or even run on mobile devices with our SDKs. Llama Stack offers unprecedented flexibility while also simplifying the developer experience.
With Llama Stack, you can easily build a RAG agent which can also search the web, do complex math, and custom tool calling. You can use telemetry to inspect those traces, and convert telemetry into evals datasets. And with Llama Stack’s plugin architecture and prepackage distributions, you choose to run your agent anywhere - in the cloud with our partners, deploy your own environment using virtualenv or Docker, operate locally with Ollama, or even run on mobile devices with our SDKs. Llama Stack offers unprecedented flexibility while also simplifying the developer experience.
## Release
After iterating on the APIs for the last 3 months, today we’re launching a stable release (V1) of the Llama Stack APIs and the corresponding llama-stack server and client packages(v0.1.0). We now have automated tests for providers. These tests make sure that all provider implementations are verified. Developers can now easily and reliably select distributions or providers based on their specific requirements.
We want to make contributing to this project as easy and transparent as
possible.
## Set up your development environment
We use [uv](https://github.com/astral-sh/uv) to manage python dependencies and virtual environments.
You can install `uv` by following this [guide](https://docs.astral.sh/uv/getting-started/installation/).
You can install the dependencies by running:
```bash
cd llama-stack
uv sync --group dev
uv pip install -e .
source .venv/bin/activate
```
```{note}
You can use a specific version of Python with `uv` by adding the `--python <version>` flag (e.g. `--python 3.12`).
Otherwise, `uv` will automatically select a Python version according to the `requires-python` section of the `pyproject.toml`.
For more info, see the [uv docs around Python versions](https://docs.astral.sh/uv/concepts/python-versions/).
```
Note that you can create a dotenv file `.env` that includes necessary environment variables:
```
LLAMA_STACK_BASE_URL=http://localhost:8321
LLAMA_STACK_CLIENT_LOG=debug
LLAMA_STACK_PORT=8321
LLAMA_STACK_CONFIG=<provider-name>
TAVILY_SEARCH_API_KEY=
BRAVE_SEARCH_API_KEY=
```
And then use this dotenv file when running client SDK tests via the following:
```bash
uv run --env-file .env -- pytest -v tests/integration/inference/test_text_inference.py --text-model=meta-llama/Llama-3.1-8B-Instruct
```
### Pre-commit Hooks
We use [pre-commit](https://pre-commit.com/) to run linting and formatting checks on your code. You can install the pre-commit hooks by running:
```bash
uv run pre-commit install
```
After that, pre-commit hooks will run automatically before each commit.
Alternatively, if you don't want to install the pre-commit hooks, you can run the checks manually by running:
```bash
uv run pre-commit run --all-files
```
```{caution}
Before pushing your changes, make sure that the pre-commit hooks have passed successfully.
```
## Discussions -> Issues -> Pull Requests
We actively welcome your pull requests. However, please read the following. This is heavily inspired by [Ghostty](https://github.com/ghostty-org/ghostty/blob/main/CONTRIBUTING.md).
If in doubt, please open a [discussion](https://github.com/meta-llama/llama-stack/discussions); we can always convert that to an issue later.
### Issues
We use GitHub issues to track public bugs. Please ensure your description is
clear and has sufficient instructions to be able to reproduce the issue.
Meta has a [bounty program](http://facebook.com/whitehat/info) for the safe
disclosure of security bugs. In those cases, please go through the process
outlined on that page and do not file a public issue.
### Contributor License Agreement ("CLA")
In order to accept your pull request, we need you to submit a CLA. You only need
to do this once to work on any of Meta's open source projects.
Complete your CLA here: <https://code.facebook.com/cla>
**I'd like to contribute!**
If you are new to the project, start by looking at the issues tagged with "good first issue". If you're interested
@ -51,93 +120,15 @@ Please avoid picking up too many issues at once. This helps you stay focused and
Please keep pull requests (PRs) small and focused. If you have a large set of changes, consider splitting them into logically grouped, smaller PRs to facilitate review and testing.
> [!TIP]
> As a general guideline:
> - Experienced contributors should try to keep no more than 5 open PRs at a time.
> - New contributors are encouraged to have only one open PR at a time until they’re familiar with the codebase and process.
## Contributor License Agreement ("CLA")
In order to accept your pull request, we need you to submit a CLA. You only need
to do this once to work on any of Meta's open source projects.
Complete your CLA here: <https://code.facebook.com/cla>
## Issues
We use GitHub issues to track public bugs. Please ensure your description is
clear and has sufficient instructions to be able to reproduce the issue.
Meta has a [bounty program](http://facebook.com/whitehat/info) for the safe
disclosure of security bugs. In those cases, please go through the process
outlined on that page and do not file a public issue.
## Set up your development environment
We use [uv](https://github.com/astral-sh/uv) to manage python dependencies and virtual environments.
You can install `uv` by following this [guide](https://docs.astral.sh/uv/getting-started/installation/).
You can install the dependencies by running:
```bash
cd llama-stack
uv sync --group dev
uv pip install -e .
source .venv/bin/activate
```{tip}
As a general guideline:
- Experienced contributors should try to keep no more than 5 open PRs at a time.
- New contributors are encouraged to have only one open PR at a time until they’re familiar with the codebase and process.
```
> [!NOTE]
> You can use a specific version of Python with `uv` by adding the `--python <version>` flag (e.g. `--python 3.12`)
> Otherwise, `uv` will automatically select a Python version according to the `requires-python` section of the `pyproject.toml`.
> For more info, see the [uv docs around Python versions](https://docs.astral.sh/uv/concepts/python-versions/).
## Repository guidelines
Note that you can create a dotenv file `.env` that includes necessary environment variables:
```
LLAMA_STACK_BASE_URL=http://localhost:8321
LLAMA_STACK_CLIENT_LOG=debug
LLAMA_STACK_PORT=8321
LLAMA_STACK_CONFIG=<provider-name>
TAVILY_SEARCH_API_KEY=
BRAVE_SEARCH_API_KEY=
```
And then use this dotenv file when running client SDK tests via the following:
```bash
uv run --env-file .env -- pytest -v tests/integration/inference/test_text_inference.py --text-model=meta-llama/Llama-3.1-8B-Instruct
```
## Pre-commit Hooks
We use [pre-commit](https://pre-commit.com/) to run linting and formatting checks on your code. You can install the pre-commit hooks by running:
```bash
uv run pre-commit install
```
After that, pre-commit hooks will run automatically before each commit.
Alternatively, if you don't want to install the pre-commit hooks, you can run the checks manually by running:
```bash
uv run pre-commit run --all-files
```
> [!CAUTION]
> Before pushing your changes, make sure that the pre-commit hooks have passed successfully.
## Running tests
You can find the Llama Stack testing documentation [here](https://github.com/meta-llama/llama-stack/blob/main/tests/README.md).
## Adding a new dependency to the project
To add a new dependency to the project, you can use the `uv` command. For example, to add `foo` to the project, you can run:
```bash
uv add foo
uv sync
```
## Coding Style
### Coding Style
* Comments should provide meaningful insights into the code. Avoid filler comments that simply
describe the next step, as they create unnecessary clutter, same goes for docstrings.
@ -157,6 +148,11 @@ uv sync
that describes the configuration. These descriptions will be used to generate the provider
documentation.
* When possible, use keyword arguments only when calling functions.
* Llama Stack utilizes [custom Exception classes](llama_stack/apis/common/errors.py) for certain Resources that should be used where applicable.
### License
By contributing to Llama, you agree that your contributions will be licensed
under the LICENSE file in the root directory of this source tree.
## Common Tasks
@ -164,7 +160,7 @@ Some tips about common tasks you work on while contributing to Llama Stack:
### Using `llama stack build`
Building a stack image (conda / docker) will use the production version of the `llama-stack` and `llama-stack-client` packages. If you are developing with a llama-stack repository checked out and need your code to be reflected in the stack image, set `LLAMA_STACK_DIR` and `LLAMA_STACK_CLIENT_DIR` to the appropriate checked out directories when running any of the `llama` CLI commands.
Building a stack image will use the production version of the `llama-stack` and `llama-stack-client` packages. If you are developing with a llama-stack repository checked out and need your code to be reflected in the stack image, set `LLAMA_STACK_DIR` and `LLAMA_STACK_CLIENT_DIR` to the appropriate checked out directories when running any of the `llama` CLI commands.
We released [Version 0.2.0](https://github.com/meta-llama/llama-stack/releases/tag/v0.2.0) with support for the Llama 4 herd of models released by Meta.
@ -112,29 +112,33 @@ Here is a list of the various API providers and available distributions that can
Please checkout for [full list](https://llama-stack.readthedocs.io/en/latest/providers/index.html)
| API Provider Builder | Environments | Agents | Inference | VectorIO | Safety | Telemetry | Post Training | Eval | DatasetIO |
> **Note**: Additional providers are available through external packages. See [External Providers](https://llama-stack.readthedocs.io/en/latest/providers/external.html) documentation.
Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from [python](https://github.com/meta-llama/llama-stack-client-python), [typescript](https://github.com/meta-llama/llama-stack-client-typescript), [swift](https://github.com/meta-llama/llama-stack-client-swift), and [kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) programming languages to quickly build your applications.
You can find more example scripts with client SDKs to talk with the Llama Stack server in our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repo.
## 🌟 GitHub Star History
## Star History
[](https://www.star-history.com/#meta-llama/llama-stack&Date)
"To learn more about torchtune: https://github.com/pytorch/torchtune\n",
"\n",
"We will use [experimental-post-training](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/templates/experimental-post-training) as the distribution template\n",
"We will use [experimental-post-training](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/distributions/experimental-post-training) as the distribution template\n",
"\n",
"#### 0.0. Prerequisite: Have an OpenAI API key\n",
"In this showcase, we will use [braintrust](https://www.braintrust.dev/) as scoring provider for eval and it uses OpenAI model as judge model for scoring. So, you need to get an API key from [OpenAI developer platform](https://platform.openai.com/docs/overview).\n",
The RFC Specification (OpenAPI format) is generated from the set of API endpoints located in `llama_stack/distribution/server/endpoints.py` using the `generate.py` utility.
The RFC Specification (OpenAPI format) is generated from the set of API endpoints located in `llama_stack.core/server/endpoints.py` using the `generate.py` utility.
@ -73,7 +73,7 @@ The API is defined in the [YAML](_static/llama-stack-spec.yaml) and [HTML](_stat
To prove out the API, we implemented a handful of use cases to make things more concrete. The [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps) repository contains [6 different examples](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) ranging from very basic to a multi turn agent.
There is also a sample inference endpoint implementation in the [llama-stack](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/distribution/server/server.py) repository.
There is also a sample inference endpoint implementation in the [llama-stack](https://github.com/meta-llama/llama-stack/blob/main/llama_stack.core/server/server.py) repository.
Llama Stack (LLS) provides two different APIs for building AI applications with tool calling capabilities: the **Agents API** and the **OpenAI Responses API**. While both enable AI systems to use tools, and maintain full conversation history, they serve different use cases and have distinct characteristics.
> **Note:** For simple and basic inferencing, you may want to use the [Chat Completions API](https://llama-stack.readthedocs.io/en/latest/providers/index.html#chat-completions) directly, before progressing to Agents or Responses API.
```{note}
For simple and basic inferencing, you may want to use the [Chat Completions API](https://llama-stack.readthedocs.io/en/latest/providers/index.html#chat-completions) directly, before progressing to Agents or Responses API.
> **Note:** By default, llama stack run.yaml defines toolgroups for web search, wolfram alpha and rag, that are provided by tavily-search, wolfram-alpha and rag providers.
```{note}
By default, llama stack run.yaml defines toolgroups for web search, wolfram alpha and rag, that are provided by tavily-search, wolfram-alpha and rag providers.
@ -6,7 +6,7 @@ This guide will walk you through the process of adding a new API provider to Lla
- Begin by reviewing the [core concepts](../concepts/index.md) of Llama Stack and choose the API your provider belongs to (Inference, Safety, VectorIO, etc.)
- Determine the provider type ({repopath}`Remote::llama_stack/providers/remote` or {repopath}`Inline::llama_stack/providers/inline`). Remote providers make requests to external services, while inline providers execute implementation locally.
- Add your provider to the appropriate {repopath}`Registry::llama_stack/providers/registry/`. Specify pip dependencies necessary.
- Update any distribution {repopath}`Templates::llama_stack/templates/` `build.yaml` and `run.yaml` files if they should include your provider by default. Run {repopath}`./scripts/distro_codegen.py` if necessary. Note that `distro_codegen.py` will fail if the new provider causes any distribution template to attempt to import provider-specific dependencies. This usually means the distribution's `get_distribution_template()` code path should only import any necessary Config or model alias definitions from each provider and not the provider's actual implementation.
- Update any distribution {repopath}`Templates::llama_stack/distributions/` `build.yaml` and `run.yaml` files if they should include your provider by default. Run {repopath}`./scripts/distro_codegen.py` if necessary. Note that `distro_codegen.py` will fail if the new provider causes any distribution template to attempt to import provider-specific dependencies. This usually means the distribution's `get_distribution_template()` code path should only import any necessary Config or model alias definitions from each provider and not the provider's actual implementation.
Here are some example PRs to help you get started:
@ -52,7 +52,7 @@ def get_base_url(self) -> str:
## Testing the Provider
Before running tests, you must have required dependencies installed. This depends on the providers or distributions you are testing. For example, if you are testing the `together` distribution, you should install dependencies via `llama stack build --template together`.
Before running tests, you must have required dependencies installed. This depends on the providers or distributions you are testing. For example, if you are testing the `together` distribution, you should install dependencies via `llama stack build --distro together`.
4. **Add Tests**: Create unit tests and integration tests for your provider in the `tests/` directory.
- Unit Tests
- By following the structure of the class methods, you will be able to easily run unit and integration tests for your database.
1. You have to configure the tests for your provide in `/tests/unit/providers/vector_io/conftest.py`.
2. Update the `vector_provider` fixture to include your provider if they are an inline provider.
3. Create a `your_vectorprovider_index` fixture that initializes your vector index.
4. Create a `your_vectorprovider_adapter` fixture that initializes your vector adapter.
5. Add your provider to the `vector_io_providers` fixture dictionary.
- Please follow the naming convention of `your_vectorprovider_index` and `your_vectorprovider_adapter` as the tests require this to execute properly.
- Integration Tests
- Integration tests are located in {repopath}`tests/integration`. These tests use the python client-SDK APIs (from the `llama_stack_client` package) to test functionality.
- The two set of integration tests are:
- `tests/integration/vector_io/test_vector_io.py`: This file tests registration, insertion, and retrieval.
- `tests/integration/vector_io/test_openai_vector_stores.py`: These tests are for OpenAI-compatible vector stores and test the OpenAI API compatibility.
- You will need to update `skip_if_provider_doesnt_support_openai_vector_stores` to include your provider as well as `skip_if_provider_doesnt_support_openai_vector_stores_search` to test the appropriate search functionality.
- Running the tests in the GitHub CI
- You will need to update the `.github/workflows/integration-vector-io-tests.yml` file to include your provider.
- If your provider is a remote provider, you will also have to add a container to spin up and run it in the action.
- Updating the pyproject.yml
- If you are adding tests for the `inline` provider you will have to update the `unit` group.
- `uv add new_pip_package --group unit`
- If you are adding tests for the `remote` provider you will have to update the `test` group, which is used in the GitHub CI for integration tests.
- `uv add new_pip_package --group test`
5. **Update Documentation**: Please update the documentation for end users
- Generate the provider documentation by running {repopath}`./scripts/provider_codegen.py`.
- Update the autogenerated content in the registry/vector_io.py file with information about your provider. Please see other providers for examples.
Understanding how Llama Stack captures and replays API interactions for testing.
## Overview
The record-replay system solves a fundamental challenge in AI testing: how do you test against expensive, non-deterministic APIs without breaking the bank or dealing with flaky tests?
The solution: intercept API calls, store real responses, and replay them later. This gives you real API behavior without the cost or variability.
## How It Works
### Request Hashing
Every API request gets converted to a deterministic hash for lookup:
**Key insight:** The hashing is intentionally precise. Different whitespace, float precision, or parameter order produces different hashes. This prevents subtle bugs from false cache hits.
```python
# These produce DIFFERENT hashes:
{"content": "Hello world"}
{"content": "Hello world\n"}
{"temperature": 0.7}
{"temperature": 0.7000001}
```
### Client Interception
The system patches OpenAI and Ollama client methods to intercept calls before they leave your application. This happens transparently - your test code doesn't change.
### Storage Architecture
Recordings use a two-tier storage system optimized for both speed and debuggability:
```
recordings/
├── index.sqlite # Fast lookup by request hash
└── responses/
├── abc123def456.json # Individual response files
└── def789ghi012.json
```
**SQLite index** enables O(log n) hash lookups and metadata queries without loading response bodies.
**JSON files** store complete request/response pairs in human-readable format for debugging.
## Recording Modes
### LIVE Mode
Direct API calls with no recording or replay:
```python
with inference_recording(mode=InferenceMode.LIVE):
Traditional mocking breaks down with AI APIs because:
- Response structures are complex and evolve frequently
- Streaming behavior is hard to mock correctly
- Edge cases in real APIs get missed
- Mocks become brittle maintenance burdens
### Why Precise Hashing?
Loose hashing (normalizing whitespace, rounding floats) seems convenient but hides bugs. If a test changes slightly, you want to know about it rather than accidentally getting the wrong cached response.
### Why JSON + SQLite?
- **JSON** - Human readable, diff-friendly, easy to inspect and modify
- **SQLite** - Fast indexed lookups without loading response bodies
- **Hybrid** - Best of both worlds for different use cases
This system provides reliable, fast testing against real AI APIs while maintaining the ability to debug issues when they arise.
--config CONFIG Path to a config file to use for the build. You can find example configs in llama_stack/distributions/**/build.yaml. If this argument is not provided, you will
be prompted to enter information interactively (default: None)
--template TEMPLATE Name of the example template config to use for build. You may use `llama stack build --list-templates` to check out the available templates (default: None)
--list-templates Show the available templates for building a Llama Stack distribution (default: False)
--image-type {conda,container,venv}
--config CONFIG Path to a config file to use for the build. You can find example configs in llama_stack.cores/**/build.yaml. If this argument is not provided, you will be prompted to
enter information interactively (default: None)
--template TEMPLATE (deprecated) Name of the example template config to use for build. You may use `llama stack build --list-distros` to check out the available distributions (default:
None)
--distro DISTRIBUTION, --distribution DISTRIBUTION
Name of the distribution to use for build. You may use `llama stack build --list-distros` to check out the available distributions (default: None)
--list-distros, --list-distributions
Show the available distributions for building a Llama Stack distribution (default: False)
--image-type {container,venv}
Image Type to use for the build. If not specified, will use the image type from the template config. (default: None)
--image-name IMAGE_NAME
[for image-type=conda|container|venv] Name of the conda or virtual environment to use for the build. If not specified, currently active environment will be used if
found. (default: None)
[for image-type=container|venv] Name of the virtual environment to use for the build. If not specified, currently active environment will be used if found. (default:
None)
--print-deps-only Print the dependencies for the stack only, without building the stack (default: False)
--run Run the stack after building using the same image type, name, and other applicable arguments (default: False)
--providers PROVIDERS
Build a config for a list of providers and only those providers. This list is formatted like: api1=provider1,api2=provider2. Where there can be multiple providers per
API. (default: None)
```
After this step is complete, a file named `<name>-build.yaml` and template file `<name>-run.yaml` will be generated and saved at the output file path specified at the end of the command.
@ -141,7 +148,7 @@ You may then pick a template to build your distribution with providers fitted to
For example, to build a distribution with TGI as the inference provider, you can run:
```
$ llama stack build --template starter
$ llama stack build --distro starter
...
You can now edit ~/.llama/distributions/llamastack-starter/starter-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-starter/starter-run.yaml`
```
@ -159,7 +166,7 @@ It would be best to start with a template and understand the structure of the co
llama stack build
> Enter a name for your Llama Stack (e.g. my-local-stack): my-stack
> Enter the image type you want your Llama Stack to be built as (container or conda or venv): conda
> Enter the image type you want your Llama Stack to be built as (container or venv): venv
Llama Stack is composed of several APIs working together. Let's select
the provider types (implementations) you want to use for these APIs.
@ -184,10 +191,10 @@ You can now edit ~/.llama/distributions/llamastack-my-local-stack/my-local-stack
:::{tab-item} Building from a pre-existing build config file
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
- The config file will be of contents like the ones in `llama_stack/templates/*build.yaml`.
- The config file will be of contents like the ones in `llama_stack/distributions/*build.yaml`.
@ -253,11 +260,11 @@ Podman is supported as an alternative to Docker. Set `CONTAINER_BINARY` to `podm
To build a container image, you may start off from a template and use the `--image-type container` flag to specify `container` as the build image type.
Performance benchmarking is critical for understanding the overhead and characteristics of the Llama Stack abstraction layer compared to direct inference engines like vLLM.
### Why This Benchmark Suite Exists
**Performance Validation**: The Llama Stack provides a unified API layer across multiple inference providers, but this abstraction introduces potential overhead. This benchmark suite quantifies the performance impact by comparing:
- Llama Stack inference (with vLLM backend)
- Direct vLLM inference calls
- Both under identical Kubernetes deployment conditions
**Production Readiness Assessment**: Real-world deployments require understanding performance characteristics under load. This suite simulates concurrent user scenarios with configurable parameters (duration, concurrency, request patterns) to validate production readiness.
**Regression Detection (TODO)**: As the Llama Stack evolves, this benchmark provides automated regression detection for performance changes. CI/CD pipelines can leverage these benchmarks to catch performance degradations before production deployments.
**Resource Planning**: By measuring throughput, latency percentiles, and resource utilization patterns, teams can make informed decisions about:
- **OpenAI-compatible API** for testing without real models
- **Configurable streaming delay** via `STREAM_DELAY_SECONDS` env var
- **Consistent responses** for reproducible benchmarks
- **Lightweight testing** without GPU requirements
**Mock server usage:**
```bash
uv run python openai-mock-server.py --port 8080
```
The mock server is also deployed in k8s as `openai-mock-service:8080` and can be used by changing the Llama Stack configuration to use the `mock-vllm-inference` provider.
## Files in this Directory
- `benchmark.py` - Core benchmark script with async streaming support
- `run-benchmark.sh` - Main script with target selection and configuration
- `openai-mock-server.py` - Mock OpenAI API server for local testing
- `SQLITE_STORE_DIR`: SQLite store directory (default: `~/.llama/distributions/starter`)
@ -127,47 +123,29 @@ The following environment variables can be configured:
## Enabling Providers
You can enable specific providers by setting their provider ID to a valid value using environment variables. This is useful when you want to use certain providers or don't have the required API keys.
You can enable specific providers by setting appropriate environment variables. For example,
### Examples of Enabling Providers
#### Enable FAISS Vector Provider
```bash
export ENABLE_FAISS=faiss
# self-hosted
export OLLAMA_URL=http://localhost:11434 # enables the Ollama inference provider
export VLLM_URL=http://localhost:8000/v1 # enables the vLLM inference provider
export TGI_URL=http://localhost:8000/v1 # enables the TGI inference provider
# cloud-hosted requiring API key configuration on the server
export CEREBRAS_API_KEY=your_cerebras_api_key # enables the Cerebras inference provider
export NVIDIA_API_KEY=your_nvidia_api_key # enables the NVIDIA inference provider
# vector providers
export MILVUS_URL=http://localhost:19530 # enables the Milvus vector provider
export CHROMADB_URL=http://localhost:8000/v1 # enables the ChromaDB vector provider
export PGVECTOR_DB=llama_stack_db # enables the PGVector vector provider
```
#### Enable Ollama Models
```bash
export ENABLE_OLLAMA=ollama
```
#### Disable vLLM Models
```bash
export VLLM_INFERENCE_MODEL=__disabled__
```
#### Disable Optional Vector Providers
```bash
export ENABLE_SQLITE_VEC=__disabled__
export ENABLE_CHROMADB=__disabled__
export ENABLE_PGVECTOR=__disabled__
```
### Provider ID Patterns
The starter distribution uses several patterns for provider IDs:
When using the `+` pattern (like `${env.ENABLE_SQLITE_VEC+sqlite-vec}`), the provider is enabled by default and can be disabled by setting the environment variable to `__disabled__`.
When using the `:` pattern (like `${env.OLLAMA_INFERENCE_MODEL:__disabled__}`), the provider is disabled by default and can be enabled by setting the environment variable to a valid value.
This distribution comes with a default "llama-guard" shield that can be enabled by setting the `SAFETY_MODEL` environment variable to point to an appropriate Llama Guard model id. Use `llama-stack-client models list` to see the list of available models.
## Running the Distribution
You can run the starter distribution via Docker, Conda, or venv.
You can run the starter distribution via Docker or venv.
### Via Docker
@ -186,12 +164,12 @@ docker run \
--port $LLAMA_STACK_PORT
```
### Via Conda or venv
### Via venv
Ensure you have configured the starter distribution using the environment variables explained above.
@ -11,12 +11,6 @@ This is the simplest way to get started. Using Llama Stack as a library means yo
Another simple way to start interacting with Llama Stack is to just spin up a container (via Docker or Podman) which is pre-built with all the providers you need. We provide a number of pre-built images so you can start a Llama Stack server instantly. You can also build your own custom container. Which distribution to choose depends on the hardware you have. See [Selection of a Distribution](selection) for more details.
## Conda:
If you have a custom or an advanced setup or you are developing on Llama Stack you can also build a custom Llama Stack server. Using `llama stack build` and `llama stack run` you can build/run a custom Llama Stack server containing the exact combination of providers you wish. We have also provided various templates to make getting started easier. See [Building a Custom Distribution](building_distro) for more details.
## Kubernetes:
If you have built a container image and want to deploy it in a Kubernetes cluster instead of starting the Llama Stack server locally. See [Kubernetes Deployment Guide](kubernetes_deployment) for more details.