llama-stack-mirror/llama_stack/distributions/meta-reference-gpu/doc_template.md
raghotham d73955a41e
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Vector IO Integration Tests / test-matrix (push) Failing after 2s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Pre-commit / pre-commit (push) Failing after 3s
Test Llama Stack Build / generate-matrix (push) Failing after 3s
Integration Tests (Replay) / Integration Tests (, , , client=, vision=) (push) Failing after 5s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Test Llama Stack Build / build (push) Has been skipped
Unit Tests / unit-tests (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 2s
Test Llama Stack Build / build-single-provider (push) Failing after 5s
Python Package Build Test / build (3.12) (push) Failing after 4s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 7s
Unit Tests / unit-tests (3.13) (push) Failing after 2s
UI Tests / ui-tests (22) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Update ReadTheDocs / update-readthedocs (push) Failing after 3s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 12s
chore: remove absolute paths (#3263)
# What does this PR do?
Finding these issues while moving to github pages.


## Test Plan
uv run --group docs sphinx-autobuild docs/source docs/build/html
--write-all
2025-08-27 12:04:25 -07:00

5.8 KiB

orphan
true

Meta Reference GPU Distribution

:maxdepth: 2
:hidden:

self

The llamastack/distribution-{{ name }} distribution consists of the following provider configurations:

{{ providers_table }}

Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs.

{% if run_config_env_vars %}

Environment Variables

The following environment variables can be configured:

{% for var, (default_value, description) in run_config_env_vars.items() %}

  • {{ var }}: {{ description }} (default: {{ default_value }}) {% endfor %} {% endif %}

Prerequisite: Downloading Models

Please use llama model list --downloaded to check that you have llama model checkpoints downloaded in ~/.llama before proceeding. See installation guide here to download the models. Run llama model list to see the available models to download, and llama model download to download the checkpoints.

$ llama model list --downloaded
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
┃ Model                                   ┃ Size     ┃ Modified Time       ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
│ Llama3.2-1B-Instruct:int4-qlora-eo8     │ 1.53 GB  │ 2025-02-26 11:22:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B                             │ 2.31 GB  │ 2025-02-18 21:48:52 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Prompt-Guard-86M                        │ 0.02 GB  │ 2025-02-26 11:29:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B-Instruct:int4-spinquant-eo8 │ 3.69 GB  │ 2025-02-26 11:37:41 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B                             │ 5.99 GB  │ 2025-02-18 21:51:26 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.1-8B                             │ 14.97 GB │ 2025-02-16 10:36:37 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B-Instruct:int4-spinquant-eo8 │ 1.51 GB  │ 2025-02-26 11:35:02 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B                        │ 2.80 GB  │ 2025-02-26 11:20:46 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B:int4                   │ 0.43 GB  │ 2025-02-26 11:33:33 │
└─────────────────────────────────────────┴──────────┴─────────────────────┘

Running the Distribution

You can do this via venv or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

LLAMA_STACK_PORT=8321
docker run \
  -it \
  --pull always \
  --gpu all \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ~/.llama:/root/.llama \
  llamastack/distribution-{{ name }} \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct

If you are using Llama Stack Safety / Shield APIs, use:

docker run \
  -it \
  --pull always \
  --gpu all \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ~/.llama:/root/.llama \
  llamastack/distribution-{{ name }} \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
  --env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B

Via venv

Make sure you have done uv pip install llama-stack and have the Llama Stack CLI available.

llama stack build --distro {{ name }} --image-type venv
llama stack run distributions/{{ name }}/run.yaml \
  --port 8321 \
  --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct

If you are using Llama Stack Safety / Shield APIs, use:

llama stack run distributions/{{ name }}/run-with-safety.yaml \
  --port 8321 \
  --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
  --env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B