llama-stack-mirror/llama_stack/testing/inference_recorder.py
ehhuang 6ac710f3b0
Some checks failed
Integration Tests (Replay) / discover-tests (push) Successful in 5s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 7s
Vector IO Integration Tests / test-matrix (3.12, remote::qdrant) (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 17s
Vector IO Integration Tests / test-matrix (3.12, remote::weaviate) (push) Failing after 15s
Integration Tests (Replay) / run-replay-mode-tests (push) Failing after 10s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 19s
Python Package Build Test / build (3.12) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.13, remote::qdrant) (push) Failing after 15s
Test External API and Providers / test-external (venv) (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 18s
Python Package Build Test / build (3.13) (push) Failing after 14s
Vector IO Integration Tests / test-matrix (3.13, remote::weaviate) (push) Failing after 18s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 23s
Unit Tests / unit-tests (3.12) (push) Failing after 17s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 18s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 21s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 19s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 21s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 17s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 56s
Unit Tests / unit-tests (3.13) (push) Failing after 52s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 55s
Pre-commit / pre-commit (push) Successful in 1m49s
fix(recording): endpoint resolution (#3013)
# What does this PR do?


## Test Plan
2025-08-01 16:23:54 -07:00

452 lines
17 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from __future__ import annotations # for forward references
import hashlib
import json
import os
import sqlite3
from collections.abc import Generator
from contextlib import contextmanager
from enum import StrEnum
from pathlib import Path
from typing import Any, Literal, cast
from llama_stack.log import get_logger
logger = get_logger(__name__, category="testing")
# Global state for the recording system
_current_mode: str | None = None
_current_storage: ResponseStorage | None = None
_original_methods: dict[str, Any] = {}
from openai.types.completion_choice import CompletionChoice
# update the "finish_reason" field, since its type definition is wrong (no None is accepted)
CompletionChoice.model_fields["finish_reason"].annotation = Literal["stop", "length", "content_filter"] | None
CompletionChoice.model_rebuild()
class InferenceMode(StrEnum):
LIVE = "live"
RECORD = "record"
REPLAY = "replay"
def normalize_request(method: str, url: str, headers: dict[str, Any], body: dict[str, Any]) -> str:
"""Create a normalized hash of the request for consistent matching."""
# Extract just the endpoint path
from urllib.parse import urlparse
parsed = urlparse(url)
normalized = {"method": method.upper(), "endpoint": parsed.path, "body": body}
# Create hash - sort_keys=True ensures deterministic ordering
normalized_json = json.dumps(normalized, sort_keys=True)
return hashlib.sha256(normalized_json.encode()).hexdigest()
def get_inference_mode() -> InferenceMode:
return InferenceMode(os.environ.get("LLAMA_STACK_TEST_INFERENCE_MODE", "live").lower())
def setup_inference_recording():
"""
Returns a context manager that can be used to record or replay inference requests. This is to be used in tests
to increase their reliability and reduce reliance on expensive, external services.
Currently, this is only supported for OpenAI and Ollama clients. These should cover the vast majority of use cases.
Calls to the /models endpoint are not currently trapped. We probably need to add support for this.
Two environment variables are required:
- LLAMA_STACK_TEST_INFERENCE_MODE: The mode to run in. Must be 'live', 'record', or 'replay'.
- LLAMA_STACK_TEST_RECORDING_DIR: The directory to store the recordings in.
The recordings are stored in a SQLite database and a JSON file for each request. The SQLite database is used to
quickly find the correct recording for a given request. The JSON files are used to store the request and response
bodies.
"""
mode = get_inference_mode()
if mode not in InferenceMode:
raise ValueError(f"Invalid LLAMA_STACK_TEST_INFERENCE_MODE: {mode}. Must be 'live', 'record', or 'replay'")
if mode == InferenceMode.LIVE:
return None
if "LLAMA_STACK_TEST_RECORDING_DIR" not in os.environ:
raise ValueError("LLAMA_STACK_TEST_RECORDING_DIR must be set for recording or replaying")
storage_dir = os.environ["LLAMA_STACK_TEST_RECORDING_DIR"]
return inference_recording(mode=mode, storage_dir=storage_dir)
def _serialize_response(response: Any) -> Any:
if hasattr(response, "model_dump"):
data = response.model_dump(mode="json")
return {
"__type__": f"{response.__class__.__module__}.{response.__class__.__qualname__}",
"__data__": data,
}
elif hasattr(response, "__dict__"):
return dict(response.__dict__)
else:
return response
def _deserialize_response(data: dict[str, Any]) -> Any:
# Check if this is a serialized Pydantic model with type information
if isinstance(data, dict) and "__type__" in data and "__data__" in data:
try:
# Import the original class and reconstruct the object
module_path, class_name = data["__type__"].rsplit(".", 1)
module = __import__(module_path, fromlist=[class_name])
cls = getattr(module, class_name)
if not hasattr(cls, "model_validate"):
raise ValueError(f"Pydantic class {cls} does not support model_validate?")
return cls.model_validate(data["__data__"])
except (ImportError, AttributeError, TypeError, ValueError) as e:
logger.warning(f"Failed to deserialize object of type {data['__type__']}: {e}")
return data["__data__"]
return data
class ResponseStorage:
"""Handles SQLite index + JSON file storage/retrieval for inference recordings."""
def __init__(self, test_dir: Path):
self.test_dir = test_dir
self.responses_dir = self.test_dir / "responses"
self.db_path = self.test_dir / "index.sqlite"
self._ensure_directories()
self._init_database()
def _ensure_directories(self):
self.test_dir.mkdir(parents=True, exist_ok=True)
self.responses_dir.mkdir(exist_ok=True)
def _init_database(self):
with sqlite3.connect(self.db_path) as conn:
conn.execute("""
CREATE TABLE IF NOT EXISTS recordings (
request_hash TEXT PRIMARY KEY,
response_file TEXT,
endpoint TEXT,
model TEXT,
timestamp TEXT,
is_streaming BOOLEAN
)
""")
def store_recording(self, request_hash: str, request: dict[str, Any], response: dict[str, Any]):
"""Store a request/response pair."""
# Generate unique response filename
response_file = f"{request_hash[:12]}.json"
response_path = self.responses_dir / response_file
# Serialize response body if needed
serialized_response = dict(response)
if "body" in serialized_response:
if isinstance(serialized_response["body"], list):
# Handle streaming responses (list of chunks)
serialized_response["body"] = [_serialize_response(chunk) for chunk in serialized_response["body"]]
else:
# Handle single response
serialized_response["body"] = _serialize_response(serialized_response["body"])
# Save response to JSON file
with open(response_path, "w") as f:
json.dump({"request": request, "response": serialized_response}, f, indent=2)
f.write("\n")
f.flush()
# Update SQLite index
with sqlite3.connect(self.db_path) as conn:
conn.execute(
"""
INSERT OR REPLACE INTO recordings
(request_hash, response_file, endpoint, model, timestamp, is_streaming)
VALUES (?, ?, ?, ?, datetime('now'), ?)
""",
(
request_hash,
response_file,
request.get("endpoint", ""),
request.get("model", ""),
response.get("is_streaming", False),
),
)
def find_recording(self, request_hash: str) -> dict[str, Any] | None:
"""Find a recorded response by request hash."""
with sqlite3.connect(self.db_path) as conn:
result = conn.execute(
"SELECT response_file FROM recordings WHERE request_hash = ?", (request_hash,)
).fetchone()
if not result:
return None
response_file = result[0]
response_path = self.responses_dir / response_file
if not response_path.exists():
return None
with open(response_path) as f:
data = json.load(f)
# Deserialize response body if needed
if "response" in data and "body" in data["response"]:
if isinstance(data["response"]["body"], list):
# Handle streaming responses
data["response"]["body"] = [_deserialize_response(chunk) for chunk in data["response"]["body"]]
else:
# Handle single response
data["response"]["body"] = _deserialize_response(data["response"]["body"])
return cast(dict[str, Any], data)
async def _patched_inference_method(original_method, self, client_type, endpoint, *args, **kwargs):
global _current_mode, _current_storage
if _current_mode == InferenceMode.LIVE or _current_storage is None:
# Normal operation
return await original_method(self, *args, **kwargs)
# Get base URL based on client type
if client_type == "openai":
base_url = str(self._client.base_url)
elif client_type == "ollama":
# Get base URL from the client (Ollama client uses host attribute)
base_url = getattr(self, "host", "http://localhost:11434")
if not base_url.startswith("http"):
base_url = f"http://{base_url}"
else:
raise ValueError(f"Unknown client type: {client_type}")
url = base_url.rstrip("/") + endpoint
# Normalize request for matching
method = "POST"
headers = {}
body = kwargs
request_hash = normalize_request(method, url, headers, body)
if _current_mode == InferenceMode.REPLAY:
recording = _current_storage.find_recording(request_hash)
if recording:
response_body = recording["response"]["body"]
if recording["response"].get("is_streaming", False):
async def replay_stream():
for chunk in response_body:
yield chunk
return replay_stream()
else:
return response_body
else:
raise RuntimeError(
f"No recorded response found for request hash: {request_hash}\n"
f"Endpoint: {endpoint}\n"
f"Model: {body.get('model', 'unknown')}\n"
f"To record this response, run with LLAMA_STACK_INFERENCE_MODE=record"
)
elif _current_mode == InferenceMode.RECORD:
response = await original_method(self, *args, **kwargs)
request_data = {
"method": method,
"url": url,
"headers": headers,
"body": body,
"endpoint": endpoint,
"model": body.get("model", ""),
}
# Determine if this is a streaming request based on request parameters
is_streaming = body.get("stream", False)
if is_streaming:
# For streaming responses, we need to collect all chunks immediately before yielding
# This ensures the recording is saved even if the generator isn't fully consumed
chunks = []
async for chunk in response:
chunks.append(chunk)
# Store the recording immediately
response_data = {"body": chunks, "is_streaming": True}
_current_storage.store_recording(request_hash, request_data, response_data)
# Return a generator that replays the stored chunks
async def replay_recorded_stream():
for chunk in chunks:
yield chunk
return replay_recorded_stream()
else:
response_data = {"body": response, "is_streaming": False}
_current_storage.store_recording(request_hash, request_data, response_data)
return response
else:
raise AssertionError(f"Invalid mode: {_current_mode}")
def patch_inference_clients():
"""Install monkey patches for OpenAI client methods and Ollama AsyncClient methods."""
global _original_methods
from ollama import AsyncClient as OllamaAsyncClient
from openai.resources.chat.completions import AsyncCompletions as AsyncChatCompletions
from openai.resources.completions import AsyncCompletions
from openai.resources.embeddings import AsyncEmbeddings
# Store original methods for both OpenAI and Ollama clients
_original_methods = {
"chat_completions_create": AsyncChatCompletions.create,
"completions_create": AsyncCompletions.create,
"embeddings_create": AsyncEmbeddings.create,
"ollama_generate": OllamaAsyncClient.generate,
"ollama_chat": OllamaAsyncClient.chat,
"ollama_embed": OllamaAsyncClient.embed,
"ollama_ps": OllamaAsyncClient.ps,
"ollama_pull": OllamaAsyncClient.pull,
"ollama_list": OllamaAsyncClient.list,
}
# Create patched methods for OpenAI client
async def patched_chat_completions_create(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["chat_completions_create"], self, "openai", "/v1/chat/completions", *args, **kwargs
)
async def patched_completions_create(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["completions_create"], self, "openai", "/v1/completions", *args, **kwargs
)
async def patched_embeddings_create(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["embeddings_create"], self, "openai", "/v1/embeddings", *args, **kwargs
)
# Apply OpenAI patches
AsyncChatCompletions.create = patched_chat_completions_create
AsyncCompletions.create = patched_completions_create
AsyncEmbeddings.create = patched_embeddings_create
# Create patched methods for Ollama client
async def patched_ollama_generate(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["ollama_generate"], self, "ollama", "/api/generate", *args, **kwargs
)
async def patched_ollama_chat(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["ollama_chat"], self, "ollama", "/api/chat", *args, **kwargs
)
async def patched_ollama_embed(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["ollama_embed"], self, "ollama", "/api/embeddings", *args, **kwargs
)
async def patched_ollama_ps(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["ollama_ps"], self, "ollama", "/api/ps", *args, **kwargs
)
async def patched_ollama_pull(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["ollama_pull"], self, "ollama", "/api/pull", *args, **kwargs
)
async def patched_ollama_list(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["ollama_list"], self, "ollama", "/api/tags", *args, **kwargs
)
# Apply Ollama patches
OllamaAsyncClient.generate = patched_ollama_generate
OllamaAsyncClient.chat = patched_ollama_chat
OllamaAsyncClient.embed = patched_ollama_embed
OllamaAsyncClient.ps = patched_ollama_ps
OllamaAsyncClient.pull = patched_ollama_pull
OllamaAsyncClient.list = patched_ollama_list
def unpatch_inference_clients():
"""Remove monkey patches and restore original OpenAI and Ollama client methods."""
global _original_methods
if not _original_methods:
return
# Import here to avoid circular imports
from ollama import AsyncClient as OllamaAsyncClient
from openai.resources.chat.completions import AsyncCompletions as AsyncChatCompletions
from openai.resources.completions import AsyncCompletions
from openai.resources.embeddings import AsyncEmbeddings
# Restore OpenAI client methods
AsyncChatCompletions.create = _original_methods["chat_completions_create"]
AsyncCompletions.create = _original_methods["completions_create"]
AsyncEmbeddings.create = _original_methods["embeddings_create"]
# Restore Ollama client methods if they were patched
OllamaAsyncClient.generate = _original_methods["ollama_generate"]
OllamaAsyncClient.chat = _original_methods["ollama_chat"]
OllamaAsyncClient.embed = _original_methods["ollama_embed"]
OllamaAsyncClient.ps = _original_methods["ollama_ps"]
OllamaAsyncClient.pull = _original_methods["ollama_pull"]
OllamaAsyncClient.list = _original_methods["ollama_list"]
_original_methods.clear()
@contextmanager
def inference_recording(mode: str = "live", storage_dir: str | Path | None = None) -> Generator[None, None, None]:
"""Context manager for inference recording/replaying."""
global _current_mode, _current_storage
# Set defaults
if storage_dir is None:
storage_dir_path = Path.home() / ".llama" / "recordings"
else:
storage_dir_path = Path(storage_dir)
# Store previous state
prev_mode = _current_mode
prev_storage = _current_storage
try:
_current_mode = mode
if mode in ["record", "replay"]:
_current_storage = ResponseStorage(storage_dir_path)
patch_inference_clients()
yield
finally:
# Restore previous state
if mode in ["record", "replay"]:
unpatch_inference_clients()
_current_mode = prev_mode
_current_storage = prev_storage