llama-stack-mirror/tests/integration/README.md
Ashwin Bharambe a8aa815b6a
feat(tests): migrate to global "setups" system for test configuration (#3390)
This PR refactors the integration test system to use global "setups"
which provides better separation of concerns:

**suites = what to test, setups = how to configure.**

NOTE: if you naming suggestions, please provide feedback

Changes:
- New `tests/integration/setups.py` with global, reusable configurations
(ollama, vllm, gpt, claude)
- Modified `scripts/integration-tests.sh` options to match with the
underlying pytest options
    - Updated documentation to reflect the new global setup system

The main benefit is that setups can be reused across multiple suites
(e.g., use "gpt" with any suite) even though sometimes they could
specifically tailored for a suite (vision <> ollama-vision). It is now
easier to add new configurations without modifying existing suites.

Usage examples:
    - `pytest tests/integration --suite=responses --setup=gpt`
- `pytest tests/integration --suite=vision` # auto-selects
"ollama-vision" setup
    - `pytest tests/integration --suite=base --setup=vllm`
2025-09-09 15:50:56 -07:00

206 lines
7.9 KiB
Markdown

# Integration Testing Guide
Integration tests verify complete workflows across different providers using Llama Stack's record-replay system.
## Quick Start
```bash
# Run all integration tests with existing recordings
uv run --group test \
pytest -sv tests/integration/ --stack-config=starter
```
## Configuration Options
You can see all options with:
```bash
cd tests/integration
# this will show a long list of options, look for "Custom options:"
pytest --help
```
Here are the most important options:
- `--stack-config`: specify the stack config to use. You have four ways to point to a stack:
- **`server:<config>`** - automatically start a server with the given config (e.g., `server:starter`). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.
- **`server:<config>:<port>`** - same as above but with a custom port (e.g., `server:starter:8322`)
- a URL which points to a Llama Stack distribution server
- a distribution name (e.g., `starter`) or a path to a `run.yaml` file
- a comma-separated list of api=provider pairs, e.g. `inference=ollama,safety=llama-guard,agents=meta-reference`. This is most useful for testing a single API surface.
- `--env`: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.
Model parameters can be influenced by the following options:
- `--text-model`: comma-separated list of text models.
- `--vision-model`: comma-separated list of vision models.
- `--embedding-model`: comma-separated list of embedding models.
- `--safety-shield`: comma-separated list of safety shields.
- `--judge-model`: comma-separated list of judge models.
- `--embedding-dimension`: output dimensionality of the embedding model to use for testing. Default: 384
Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped
if no model is specified.
### Suites and Setups
- `--suite`: single named suite that narrows which tests are collected.
- Available suites:
- `base`: collects most tests (excludes responses and post_training)
- `responses`: collects tests under `tests/integration/responses` (needs strong tool-calling models)
- `vision`: collects only `tests/integration/inference/test_vision_inference.py`
- `--setup`: global configuration that can be used with any suite. Setups prefill model/env defaults; explicit CLI flags always win.
- Available setups:
- `ollama`: Local Ollama provider with lightweight models (sets OLLAMA_URL, uses llama3.2:3b-instruct-fp16)
- `vllm`: VLLM provider for efficient local inference (sets VLLM_URL, uses Llama-3.2-1B-Instruct)
- `gpt`: OpenAI GPT models for high-quality responses (uses gpt-4o)
- `claude`: Anthropic Claude models for high-quality responses (uses claude-3-5-sonnet)
Examples
```bash
# Fast responses run with a strong tool-calling model
pytest -s -v tests/integration --stack-config=server:starter --suite=responses --setup=gpt
# Fast single-file vision run with Ollama defaults
pytest -s -v tests/integration --stack-config=server:starter --suite=vision --setup=ollama
# Base suite with VLLM for performance
pytest -s -v tests/integration --stack-config=server:starter --suite=base --setup=vllm
# Override a default from setup
pytest -s -v tests/integration --stack-config=server:starter \
--suite=responses --setup=gpt --embedding-model=text-embedding-3-small
```
## Examples
### Testing against a Server
Run all text inference tests by auto-starting a server with the `starter` config:
```bash
OLLAMA_URL=http://localhost:11434 \
pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config=server:starter \
--text-model=ollama/llama3.2:3b-instruct-fp16 \
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
```
Run tests with auto-server startup on a custom port:
```bash
OLLAMA_URL=http://localhost:11434 \
pytest -s -v tests/integration/inference/ \
--stack-config=server:starter:8322 \
--text-model=ollama/llama3.2:3b-instruct-fp16 \
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
```
### Testing with Library Client
The library client constructs the Stack "in-process" instead of using a server. This is useful during the iterative development process since you don't need to constantly start and stop servers.
You can do this by simply using `--stack-config=starter` instead of `--stack-config=server:starter`.
### Using ad-hoc distributions
Sometimes, you may want to make up a distribution on the fly. This is useful for testing a single provider or a single API or a small combination of providers. You can do so by specifying a comma-separated list of api=provider pairs to the `--stack-config` option, e.g. `inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference`.
```bash
pytest -s -v tests/integration/inference/ \
--stack-config=inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference \
--text-model=$TEXT_MODELS \
--vision-model=$VISION_MODELS \
--embedding-model=$EMBEDDING_MODELS
```
Another example: Running Vector IO tests for embedding models:
```bash
pytest -s -v tests/integration/vector_io/ \
--stack-config=inference=inline::sentence-transformers,vector_io=inline::sqlite-vec \
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
```
## Recording Modes
The testing system supports three modes controlled by environment variables:
### REPLAY Mode (Default)
Uses cached responses instead of making API calls:
```bash
pytest tests/integration/
```
### RECORD Mode
Captures API interactions for later replay:
```bash
pytest tests/integration/inference/test_new_feature.py --inference-mode=record
```
### LIVE Mode
Tests make real API calls (but not recorded):
```bash
pytest tests/integration/ --inference-mode=live
```
By default, the recording directory is `tests/integration/recordings`. You can override this by setting the `LLAMA_STACK_TEST_RECORDING_DIR` environment variable.
## Managing Recordings
### Viewing Recordings
```bash
# See what's recorded
sqlite3 recordings/index.sqlite "SELECT endpoint, model, timestamp FROM recordings;"
# Inspect specific response
cat recordings/responses/abc123.json | jq '.'
```
### Re-recording Tests
#### Remote Re-recording (Recommended)
Use the automated workflow script for easier re-recording:
```bash
./scripts/github/schedule-record-workflow.sh --subdirs "inference,agents"
```
See the [main testing guide](../README.md#remote-re-recording-recommended) for full details.
#### Local Re-recording
```bash
# Re-record specific tests
pytest -s -v --stack-config=server:starter tests/integration/inference/test_modified.py --inference-mode=record
```
Note that when re-recording tests, you must use a Stack pointing to a server (i.e., `server:starter`). This subtlety exists because the set of tests run in server are a superset of the set of tests run in the library client.
## Writing Tests
### Basic Test Pattern
```python
def test_basic_completion(llama_stack_client, text_model_id):
response = llama_stack_client.inference.completion(
model_id=text_model_id,
content=CompletionMessage(role="user", content="Hello"),
)
# Test structure, not AI output quality
assert response.completion_message is not None
assert isinstance(response.completion_message.content, str)
assert len(response.completion_message.content) > 0
```
### Provider-Specific Tests
```python
def test_asymmetric_embeddings(llama_stack_client, embedding_model_id):
if embedding_model_id not in MODELS_SUPPORTING_TASK_TYPE:
pytest.skip(f"Model {embedding_model_id} doesn't support task types")
query_response = llama_stack_client.inference.embeddings(
model_id=embedding_model_id,
contents=["What is machine learning?"],
task_type="query",
)
assert query_response.embeddings is not None
```