llama-stack-mirror/docs/source/providers/index.md
Kelly Brown 026caa5551
docs: part 1 - fix warnings in documentation generation (#2861)
**Description**
This PR removes some of the warnings when uv builds the docs
- Errors appear when generating docs about .md files not appearing in
toctree. ~~Adding content to the `providers-gen.py ` file that adds `---
orphan: true ---` to to each file.~~. Added a toctree generator to the
`providers-gen.py` file, this gets rid of the errors in the builds.
- Deletes the `_openai_compat` files, extension of PR #2849
- Adds the `files` APIs section to the `providers` toctree on the index
page
- Manually adds the `--- orphan: true ---` to the advanced apis. Ill try
to find a way to modify the providers code gen so it automatically adds
it, but this fixes the errors.
- Adds the `testing.md` to the `contributing` toctree
- Adds `starting_llama_stack_server.md` to `distributions` toctree

There are some other warnings im still looking at but this PR gets rid
of most of the toctree errors
Theres also an issue with the actual distribution-codegen that I can
investigate in another PR. Opened a bug for it here #2873
2025-07-30 10:50:10 -07:00

28 lines
1.3 KiB
Markdown

# API Providers
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
- LLM inference providers (e.g., Meta Reference, Ollama, Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, OpenAI, Anthropic, Gemini, WatsonX, etc.),
- Vector databases (e.g., FAISS, SQLite-Vec, ChromaDB, Weaviate, Qdrant, Milvus, PGVector, etc.),
- Safety providers (e.g., Meta's Llama Guard, Prompt Guard, Code Scanner, AWS Bedrock Guardrails, etc.),
- Tool Runtime providers (e.g., RAG Runtime, Brave Search, etc.)
Providers come in two flavors:
- **Remote**: the provider runs as a separate service external to the Llama Stack codebase. Llama Stack contains a small amount of adapter code.
- **Inline**: the provider is fully specified and implemented within the Llama Stack codebase. It may be a simple wrapper around an existing library, or a full fledged implementation within Llama Stack.
Importantly, Llama Stack always strives to provide at least one fully inline provider for each API so you can iterate on a fully featured environment locally.
```{toctree}
:maxdepth: 1
external
openai
inference/index
agents/index
datasetio/index
safety/index
telemetry/index
vector_io/index
tool_runtime/index
files/index
```