mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
This PR refactors the integration test system to use global "setups" which provides better separation of concerns: **suites = what to test, setups = how to configure.** NOTE: if you naming suggestions, please provide feedback Changes: - New `tests/integration/setups.py` with global, reusable configurations (ollama, vllm, gpt, claude) - Modified `scripts/integration-tests.sh` options to match with the underlying pytest options - Updated documentation to reflect the new global setup system The main benefit is that setups can be reused across multiple suites (e.g., use "gpt" with any suite) even though sometimes they could specifically tailored for a suite (vision <> ollama-vision). It is now easier to add new configurations without modifying existing suites. Usage examples: - `pytest tests/integration --suite=responses --setup=gpt` - `pytest tests/integration --suite=vision` # auto-selects "ollama-vision" setup - `pytest tests/integration --suite=base --setup=vllm`
206 lines
7.9 KiB
Markdown
206 lines
7.9 KiB
Markdown
# Integration Testing Guide
|
|
|
|
Integration tests verify complete workflows across different providers using Llama Stack's record-replay system.
|
|
|
|
## Quick Start
|
|
|
|
```bash
|
|
# Run all integration tests with existing recordings
|
|
uv run --group test \
|
|
pytest -sv tests/integration/ --stack-config=starter
|
|
```
|
|
|
|
## Configuration Options
|
|
|
|
You can see all options with:
|
|
```bash
|
|
cd tests/integration
|
|
|
|
# this will show a long list of options, look for "Custom options:"
|
|
pytest --help
|
|
```
|
|
|
|
Here are the most important options:
|
|
- `--stack-config`: specify the stack config to use. You have four ways to point to a stack:
|
|
- **`server:<config>`** - automatically start a server with the given config (e.g., `server:starter`). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.
|
|
- **`server:<config>:<port>`** - same as above but with a custom port (e.g., `server:starter:8322`)
|
|
- a URL which points to a Llama Stack distribution server
|
|
- a distribution name (e.g., `starter`) or a path to a `run.yaml` file
|
|
- a comma-separated list of api=provider pairs, e.g. `inference=ollama,safety=llama-guard,agents=meta-reference`. This is most useful for testing a single API surface.
|
|
- `--env`: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.
|
|
|
|
Model parameters can be influenced by the following options:
|
|
- `--text-model`: comma-separated list of text models.
|
|
- `--vision-model`: comma-separated list of vision models.
|
|
- `--embedding-model`: comma-separated list of embedding models.
|
|
- `--safety-shield`: comma-separated list of safety shields.
|
|
- `--judge-model`: comma-separated list of judge models.
|
|
- `--embedding-dimension`: output dimensionality of the embedding model to use for testing. Default: 384
|
|
|
|
Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped
|
|
if no model is specified.
|
|
|
|
### Suites and Setups
|
|
|
|
- `--suite`: single named suite that narrows which tests are collected.
|
|
- Available suites:
|
|
- `base`: collects most tests (excludes responses and post_training)
|
|
- `responses`: collects tests under `tests/integration/responses` (needs strong tool-calling models)
|
|
- `vision`: collects only `tests/integration/inference/test_vision_inference.py`
|
|
- `--setup`: global configuration that can be used with any suite. Setups prefill model/env defaults; explicit CLI flags always win.
|
|
- Available setups:
|
|
- `ollama`: Local Ollama provider with lightweight models (sets OLLAMA_URL, uses llama3.2:3b-instruct-fp16)
|
|
- `vllm`: VLLM provider for efficient local inference (sets VLLM_URL, uses Llama-3.2-1B-Instruct)
|
|
- `gpt`: OpenAI GPT models for high-quality responses (uses gpt-4o)
|
|
- `claude`: Anthropic Claude models for high-quality responses (uses claude-3-5-sonnet)
|
|
|
|
Examples
|
|
|
|
```bash
|
|
# Fast responses run with a strong tool-calling model
|
|
pytest -s -v tests/integration --stack-config=server:starter --suite=responses --setup=gpt
|
|
|
|
# Fast single-file vision run with Ollama defaults
|
|
pytest -s -v tests/integration --stack-config=server:starter --suite=vision --setup=ollama
|
|
|
|
# Base suite with VLLM for performance
|
|
pytest -s -v tests/integration --stack-config=server:starter --suite=base --setup=vllm
|
|
|
|
# Override a default from setup
|
|
pytest -s -v tests/integration --stack-config=server:starter \
|
|
--suite=responses --setup=gpt --embedding-model=text-embedding-3-small
|
|
```
|
|
|
|
## Examples
|
|
|
|
### Testing against a Server
|
|
|
|
Run all text inference tests by auto-starting a server with the `starter` config:
|
|
|
|
```bash
|
|
OLLAMA_URL=http://localhost:11434 \
|
|
pytest -s -v tests/integration/inference/test_text_inference.py \
|
|
--stack-config=server:starter \
|
|
--text-model=ollama/llama3.2:3b-instruct-fp16 \
|
|
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
|
|
```
|
|
|
|
Run tests with auto-server startup on a custom port:
|
|
|
|
```bash
|
|
OLLAMA_URL=http://localhost:11434 \
|
|
pytest -s -v tests/integration/inference/ \
|
|
--stack-config=server:starter:8322 \
|
|
--text-model=ollama/llama3.2:3b-instruct-fp16 \
|
|
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
|
|
```
|
|
|
|
### Testing with Library Client
|
|
|
|
The library client constructs the Stack "in-process" instead of using a server. This is useful during the iterative development process since you don't need to constantly start and stop servers.
|
|
|
|
|
|
You can do this by simply using `--stack-config=starter` instead of `--stack-config=server:starter`.
|
|
|
|
|
|
### Using ad-hoc distributions
|
|
|
|
Sometimes, you may want to make up a distribution on the fly. This is useful for testing a single provider or a single API or a small combination of providers. You can do so by specifying a comma-separated list of api=provider pairs to the `--stack-config` option, e.g. `inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference`.
|
|
|
|
```bash
|
|
pytest -s -v tests/integration/inference/ \
|
|
--stack-config=inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference \
|
|
--text-model=$TEXT_MODELS \
|
|
--vision-model=$VISION_MODELS \
|
|
--embedding-model=$EMBEDDING_MODELS
|
|
```
|
|
|
|
Another example: Running Vector IO tests for embedding models:
|
|
|
|
```bash
|
|
pytest -s -v tests/integration/vector_io/ \
|
|
--stack-config=inference=inline::sentence-transformers,vector_io=inline::sqlite-vec \
|
|
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
|
|
```
|
|
|
|
## Recording Modes
|
|
|
|
The testing system supports three modes controlled by environment variables:
|
|
|
|
### REPLAY Mode (Default)
|
|
Uses cached responses instead of making API calls:
|
|
```bash
|
|
pytest tests/integration/
|
|
```
|
|
### RECORD Mode
|
|
Captures API interactions for later replay:
|
|
```bash
|
|
pytest tests/integration/inference/test_new_feature.py --inference-mode=record
|
|
```
|
|
|
|
### LIVE Mode
|
|
Tests make real API calls (but not recorded):
|
|
```bash
|
|
pytest tests/integration/ --inference-mode=live
|
|
```
|
|
|
|
By default, the recording directory is `tests/integration/recordings`. You can override this by setting the `LLAMA_STACK_TEST_RECORDING_DIR` environment variable.
|
|
|
|
## Managing Recordings
|
|
|
|
### Viewing Recordings
|
|
```bash
|
|
# See what's recorded
|
|
sqlite3 recordings/index.sqlite "SELECT endpoint, model, timestamp FROM recordings;"
|
|
|
|
# Inspect specific response
|
|
cat recordings/responses/abc123.json | jq '.'
|
|
```
|
|
|
|
### Re-recording Tests
|
|
|
|
#### Remote Re-recording (Recommended)
|
|
Use the automated workflow script for easier re-recording:
|
|
```bash
|
|
./scripts/github/schedule-record-workflow.sh --subdirs "inference,agents"
|
|
```
|
|
See the [main testing guide](../README.md#remote-re-recording-recommended) for full details.
|
|
|
|
#### Local Re-recording
|
|
```bash
|
|
# Re-record specific tests
|
|
pytest -s -v --stack-config=server:starter tests/integration/inference/test_modified.py --inference-mode=record
|
|
```
|
|
|
|
Note that when re-recording tests, you must use a Stack pointing to a server (i.e., `server:starter`). This subtlety exists because the set of tests run in server are a superset of the set of tests run in the library client.
|
|
|
|
## Writing Tests
|
|
|
|
### Basic Test Pattern
|
|
```python
|
|
def test_basic_completion(llama_stack_client, text_model_id):
|
|
response = llama_stack_client.inference.completion(
|
|
model_id=text_model_id,
|
|
content=CompletionMessage(role="user", content="Hello"),
|
|
)
|
|
|
|
# Test structure, not AI output quality
|
|
assert response.completion_message is not None
|
|
assert isinstance(response.completion_message.content, str)
|
|
assert len(response.completion_message.content) > 0
|
|
```
|
|
|
|
### Provider-Specific Tests
|
|
```python
|
|
def test_asymmetric_embeddings(llama_stack_client, embedding_model_id):
|
|
if embedding_model_id not in MODELS_SUPPORTING_TASK_TYPE:
|
|
pytest.skip(f"Model {embedding_model_id} doesn't support task types")
|
|
|
|
query_response = llama_stack_client.inference.embeddings(
|
|
model_id=embedding_model_id,
|
|
contents=["What is machine learning?"],
|
|
task_type="query",
|
|
)
|
|
|
|
assert query_response.embeddings is not None
|
|
```
|