# What does this PR do?
This PR adds `sqlite_vec` as an additional inline vectordb.
Tested with `ollama` by adding the `vector_io` object in
`./llama_stack/templates/ollama/run.yaml` :
```yaml
vector_io:
- provider_id: sqlite_vec
provider_type: inline::sqlite_vec
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/sqlite_vec.db
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/sqlite_vec.db
```
I also updated the `./tests/client-sdk/vector_io/test_vector_io.py` test
file with:
```python
INLINE_VECTOR_DB_PROVIDERS = ["faiss", "sqlite_vec"]
```
And parameterized the relevant tests.
[//]: # (If resolving an issue, uncomment and update the line below)
# Closes
https://github.com/meta-llama/llama-stack/issues/1005
## Test Plan
I ran the tests with:
```bash
INFERENCE_MODEL=llama3.2:3b-instruct-fp16 LLAMA_STACK_CONFIG=ollama pytest -s -v tests/client-sdk/vector_io/test_vector_io.py
```
Which outputs:
```python
...
PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_retrieve[all-MiniLM-L6-v2-sqlite_vec] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_list PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_register[all-MiniLM-L6-v2-faiss] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_register[all-MiniLM-L6-v2-sqlite_vec] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_unregister[faiss] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_unregister[sqlite_vec] PASSED
```
In addition, I ran the `rag_with_vector_db.py`
[example](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/rag_with_vector_db.py)
using the script below with `uv run rag_example.py`.
<details>
<summary>CLICK TO SHOW SCRIPT 👋 </summary>
```python
#!/usr/bin/env python3
import os
import uuid
from termcolor import cprint
# Set environment variables
os.environ['INFERENCE_MODEL'] = 'llama3.2:3b-instruct-fp16'
os.environ['LLAMA_STACK_CONFIG'] = 'ollama'
# Import libraries after setting environment variables
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.types import Document
def main():
# Initialize the client
client = LlamaStackAsLibraryClient("ollama")
vector_db_id = f"test-vector-db-{uuid.uuid4().hex}"
_ = client.initialize()
model_id = 'llama3.2:3b-instruct-fp16'
# Define the list of document URLs and create Document objects
urls = [
"chat.rst",
"llama3.rst",
"memory_optimizations.rst",
"lora_finetune.rst",
]
documents = [
Document(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
metadata={},
)
for i, url in enumerate(urls)
]
# (Optional) Use the documents as needed with your client here
client.vector_dbs.register(
provider_id='sqlite_vec',
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
)
client.tool_runtime.rag_tool.insert(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=512,
)
# Create agent configuration
agent_config = AgentConfig(
model=model_id,
instructions="You are a helpful assistant",
enable_session_persistence=False,
toolgroups=[
{
"name": "builtin::rag",
"args": {
"vector_db_ids": [vector_db_id],
}
}
],
)
# Instantiate the Agent
agent = Agent(client, agent_config)
# List of user prompts
user_prompts = [
"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.",
"Was anything related to 'Llama3' discussed, if so what?",
"Tell me how to use LoRA",
"What about Quantization?",
]
# Create a session for the agent
session_id = agent.create_session("test-session")
# Process each prompt and display the output
for prompt in user_prompts:
cprint(f"User> {prompt}", "green")
response = agent.create_turn(
messages=[
{
"role": "user",
"content": prompt,
}
],
session_id=session_id,
)
# Log and print events from the response
for log in EventLogger().log(response):
log.print()
if __name__ == "__main__":
main()
```
</details>
Which outputs a large summary of RAG generation.
# Documentation
Will handle documentation updates in follow-up PR.
# (- [ ] Added a Changelog entry if the change is significant)
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
|
||
|---|---|---|
| .github | ||
| distributions | ||
| docs | ||
| llama_stack | ||
| rfcs | ||
| tests/client-sdk | ||
| .gitignore | ||
| .gitmodules | ||
| .pre-commit-config.yaml | ||
| .readthedocs.yaml | ||
| .ruff.toml | ||
| CODE_OF_CONDUCT.md | ||
| CONTRIBUTING.md | ||
| LICENSE | ||
| MANIFEST.in | ||
| pyproject.toml | ||
| README.md | ||
| requirements.txt | ||
| SECURITY.md | ||
| uv.lock | ||
Llama Stack
Quick Start | Documentation | Colab Notebook
Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides
- Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
- Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
- Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
- Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
- Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack Benefits
- Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
- Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
- Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.
By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.
API Providers
Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.
| API Provider Builder | Environments | Agents | Inference | Memory | Safety | Telemetry |
|---|---|---|---|---|---|---|
| Meta Reference | Single Node | ✅ | ✅ | ✅ | ✅ | ✅ |
| SambaNova | Hosted | ✅ | ||||
| Cerebras | Hosted | ✅ | ||||
| Fireworks | Hosted | ✅ | ✅ | ✅ | ||
| AWS Bedrock | Hosted | ✅ | ✅ | |||
| Together | Hosted | ✅ | ✅ | ✅ | ||
| Groq | Hosted | ✅ | ||||
| Ollama | Single Node | ✅ | ||||
| TGI | Hosted and Single Node | ✅ | ||||
| NVIDIA NIM | Hosted and Single Node | ✅ | ||||
| Chroma | Single Node | ✅ | ||||
| PG Vector | Single Node | ✅ | ||||
| PyTorch ExecuTorch | On-device iOS | ✅ | ✅ | |||
| vLLM | Hosted and Single Node | ✅ |
Distributions
A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:
| Distribution | Llama Stack Docker | Start This Distribution |
|---|---|---|
| Meta Reference | llamastack/distribution-meta-reference-gpu | Guide |
| Meta Reference Quantized | llamastack/distribution-meta-reference-quantized-gpu | Guide |
| SambaNova | llamastack/distribution-sambanova | Guide |
| Cerebras | llamastack/distribution-cerebras | Guide |
| Ollama | llamastack/distribution-ollama | Guide |
| TGI | llamastack/distribution-tgi | Guide |
| Together | llamastack/distribution-together | Guide |
| Fireworks | llamastack/distribution-fireworks | Guide |
| vLLM | llamastack/distribution-remote-vllm | Guide |
Installation
You have two ways to install this repository:
-
Install as a package: You can install the repository directly from PyPI by running the following command:
pip install llama-stack -
Install from source: If you prefer to install from the source code, make sure you have conda installed. Then, run the following commands:
mkdir -p ~/local cd ~/local git clone git@github.com:meta-llama/llama-stack.git conda create -n stack python=3.10 conda activate stack cd llama-stack pip install -e .
Documentation
Please checkout our Documentation page for more details.
- CLI references
- llama (server-side) CLI Reference: Guide for using the
llamaCLI to work with Llama models (download, study prompts), and building/starting a Llama Stack distribution. - llama (client-side) CLI Reference: Guide for using the
llama-stack-clientCLI, which allows you to query information about the distribution.
- llama (server-side) CLI Reference: Guide for using the
- Getting Started
- Quick guide to start a Llama Stack server.
- Jupyter notebook to walk-through how to use simple text and vision inference llama_stack_client APIs
- The complete Llama Stack lesson Colab notebook of the new Llama 3.2 course on Deeplearning.ai.
- A Zero-to-Hero Guide that guide you through all the key components of llama stack with code samples.
- Contributing
- Adding a new API Provider to walk-through how to add a new API provider.
Llama Stack Client SDKs
| Language | Client SDK | Package |
|---|---|---|
| Python | llama-stack-client-python | |
| Swift | llama-stack-client-swift | |
| Typescript | llama-stack-client-typescript | |
| Kotlin | llama-stack-client-kotlin |
Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.
You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.