llama-stack-mirror/docs/source/distributions/configuration.md
Akram Ben Aissi 072dca0609
feat: Add Kubernetes auth provider to use SelfSubjectReview and kubernetes api server (#2559)
# What does this PR do?
Add Kubernetes authentication provider support
- Add KubernetesAuthProvider class for token validation using Kubernetes
SelfSubjectReview API
- Add KubernetesAuthProviderConfig with configurable API server URL, TLS
settings, and claims mapping
- Implement authentication via POST requests to
/apis/authentication.k8s.io/v1/selfsubjectreviews endpoint
- Add support for parsing Kubernetes SelfSubjectReview response format
to extract user information
- Add KUBERNETES provider type to AuthProviderType enum
- Update create_auth_provider factory function to handle 'kubernetes'
provider type
- Add comprehensive unit tests for KubernetesAuthProvider functionality
- Add documentation with configuration examples and usage instructions

The provider validates tokens by sending SelfSubjectReview requests to
the Kubernetes API server and extracts user information from the
userInfo structure in the response.


<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
What This Verifies:
Authentication header validation
Token validation with Kubernetes SelfSubjectReview and kubernetes server
API endpoint
Error handling for invalid tokens and HTTP errors
Request payload structure and headers

```
python -m pytest tests/unit/server/test_auth.py -k "kubernetes" -v
```

Signed-off-by: Akram Ben Aissi <akram.benaissi@gmail.com>
2025-09-08 11:25:10 +02:00

802 lines
26 KiB
Markdown

# Configuring a "Stack"
The Llama Stack runtime configuration is specified as a YAML file. Here is a simplified version of an example configuration file for the Ollama distribution:
```{note}
The default `run.yaml` files generated by templates are starting points for your configuration. For guidance on customizing these files for your specific needs, see [Customizing Your run.yaml Configuration](customizing_run_yaml.md).
```
```{dropdown} 👋 Click here for a Sample Configuration File
```yaml
version: 2
apis:
- agents
- inference
- vector_io
- safety
- telemetry
providers:
inference:
- provider_id: ollama
provider_type: remote::ollama
config:
url: ${env.OLLAMA_URL:=http://localhost:11434}
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/faiss_store.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config: {}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/agents_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config: {}
metadata_store:
namespace: null
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/registry.db
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: ollama
provider_model_id: null
shields: []
server:
port: 8321
auth:
provider_config:
type: "oauth2_token"
jwks:
uri: "https://my-token-issuing-svc.com/jwks"
```
Let's break this down into the different sections. The first section specifies the set of APIs that the stack server will serve:
```yaml
apis:
- agents
- inference
- vector_io
- safety
- telemetry
```
## Providers
Next up is the most critical part: the set of providers that the stack will use to serve the above APIs. Consider the `inference` API:
```yaml
providers:
inference:
# provider_id is a string you can choose freely
- provider_id: ollama
# provider_type is a string that specifies the type of provider.
# in this case, the provider for inference is ollama and it runs remotely (outside of the distribution)
provider_type: remote::ollama
# config is a dictionary that contains the configuration for the provider.
# in this case, the configuration is the url of the ollama server
config:
url: ${env.OLLAMA_URL:=http://localhost:11434}
```
A few things to note:
- A _provider instance_ is identified with an (id, type, config) triplet.
- The id is a string you can choose freely.
- You can instantiate any number of provider instances of the same type.
- The configuration dictionary is provider-specific.
- Notice that configuration can reference environment variables (with default values), which are expanded at runtime. When you run a stack server (via docker or via `llama stack run`), you can specify `--env OLLAMA_URL=http://my-server:11434` to override the default value.
### Environment Variable Substitution
Llama Stack supports environment variable substitution in configuration values using the
`${env.VARIABLE_NAME}` syntax. This allows you to externalize configuration values and provide
different settings for different environments. The syntax is inspired by [bash parameter expansion](https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html)
and follows similar patterns.
#### Basic Syntax
The basic syntax for environment variable substitution is:
```yaml
config:
api_key: ${env.API_KEY}
url: ${env.SERVICE_URL}
```
If the environment variable is not set, the server will raise an error during startup.
#### Default Values
You can provide default values using the `:=` operator:
```yaml
config:
url: ${env.OLLAMA_URL:=http://localhost:11434}
port: ${env.PORT:=8321}
timeout: ${env.TIMEOUT:=60}
```
If the environment variable is not set, the default value `http://localhost:11434` will be used.
Empty defaults are allowed so `url: ${env.OLLAMA_URL:=}` will be set to `None` if the environment variable is not set.
#### Conditional Values
You can use the `:+` operator to provide a value only when the environment variable is set:
```yaml
config:
# Only include this field if ENVIRONMENT is set
environment: ${env.ENVIRONMENT:+production}
```
If the environment variable is set, the value after `:+` will be used. If it's not set, the field
will be omitted with a `None` value.
Do not use conditional values (`${env.OLLAMA_URL:+}`) for empty defaults (`${env.OLLAMA_URL:=}`).
This will be set to `None` if the environment variable is not set.
Conditional must only be used when the environment variable is set.
#### Examples
Here are some common patterns:
```yaml
# Required environment variable (will error if not set)
api_key: ${env.OPENAI_API_KEY}
# Optional with default
base_url: ${env.API_BASE_URL:=https://api.openai.com/v1}
# Conditional field
debug_mode: ${env.DEBUG:+true}
# Optional field that becomes None if not set
optional_token: ${env.OPTIONAL_TOKEN:+}
```
#### Runtime Override
You can override environment variables at runtime when starting the server:
```bash
# Override specific environment variables
llama stack run --config run.yaml --env API_KEY=sk-123 --env BASE_URL=https://custom-api.com
# Or set them in your shell
export API_KEY=sk-123
export BASE_URL=https://custom-api.com
llama stack run --config run.yaml
```
#### Type Safety
The environment variable substitution system is type-safe:
- String values remain strings
- Empty defaults (`${env.VAR:+}`) are converted to `None` for fields that accept `str | None`
- Numeric defaults are properly typed (e.g., `${env.PORT:=8321}` becomes an integer)
- Boolean defaults work correctly (e.g., `${env.DEBUG:=false}` becomes a boolean)
## Resources
Let's look at the `models` section:
```yaml
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: ollama
provider_model_id: null
model_type: llm
```
A Model is an instance of a "Resource" (see [Concepts](../concepts/index)) and is associated with a specific inference provider (in this case, the provider with identifier `ollama`). This is an instance of a "pre-registered" model. While we always encourage the clients to register models before using them, some Stack servers may come up a list of "already known and available" models.
What's with the `provider_model_id` field? This is an identifier for the model inside the provider's model catalog. Contrast it with `model_id` which is the identifier for the same model for Llama Stack's purposes. For example, you may want to name "llama3.2:vision-11b" as "image_captioning_model" when you use it in your Stack interactions. When omitted, the server will set `provider_model_id` to be the same as `model_id`.
If you need to conditionally register a model in the configuration, such as only when specific environment variable(s) are set, this can be accomplished by utilizing a special `__disabled__` string as the default value of an environment variable substitution, as shown below:
```yaml
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL:__disabled__}
provider_id: ollama
provider_model_id: ${env.INFERENCE_MODEL:__disabled__}
```
The snippet above will only register this model if the environment variable `INFERENCE_MODEL` is set and non-empty. If the environment variable is not set, the model will not get registered at all.
## Server Configuration
The `server` section configures the HTTP server that serves the Llama Stack APIs:
```yaml
server:
port: 8321 # Port to listen on (default: 8321)
tls_certfile: "/path/to/cert.pem" # Optional: Path to TLS certificate for HTTPS
tls_keyfile: "/path/to/key.pem" # Optional: Path to TLS key for HTTPS
cors: true # Optional: Enable CORS (dev mode) or full config object
```
### CORS Configuration
CORS (Cross-Origin Resource Sharing) can be configured in two ways:
**Local development** (allows localhost origins only):
```yaml
server:
cors: true
```
**Explicit configuration** (custom origins and settings):
```yaml
server:
cors:
allow_origins: ["https://myapp.com", "https://app.example.com"]
allow_methods: ["GET", "POST", "PUT", "DELETE"]
allow_headers: ["Content-Type", "Authorization"]
allow_credentials: true
max_age: 3600
```
When `cors: true`, the server enables secure localhost-only access for local development. For production, specify exact origins to maintain security.
### Authentication Configuration
> **Breaking Change (v0.2.14)**: The authentication configuration structure has changed. The previous format with `provider_type` and `config` fields has been replaced with a unified `provider_config` field that includes the `type` field. Update your configuration files accordingly.
The `auth` section configures authentication for the server. When configured, all API requests must include a valid Bearer token in the Authorization header:
```
Authorization: Bearer <token>
```
The server supports multiple authentication providers:
#### OAuth 2.0/OpenID Connect Provider with Kubernetes
The server can be configured to use service account tokens for authorization, validating these against the Kubernetes API server, e.g.:
```yaml
server:
auth:
provider_config:
type: "oauth2_token"
jwks:
uri: "https://kubernetes.default.svc:8443/openid/v1/jwks"
token: "${env.TOKEN:+}"
key_recheck_period: 3600
tls_cafile: "/path/to/ca.crt"
issuer: "https://kubernetes.default.svc"
audience: "https://kubernetes.default.svc"
```
To find your cluster's jwks uri (from which the public key(s) to verify the token signature are obtained), run:
```
kubectl get --raw /.well-known/openid-configuration| jq -r .jwks_uri
```
For the tls_cafile, you can use the CA certificate of the OIDC provider:
```bash
kubectl config view --minify -o jsonpath='{.clusters[0].cluster.certificate-authority}'
```
For the issuer, you can use the OIDC provider's URL:
```bash
kubectl get --raw /.well-known/openid-configuration| jq .issuer
```
The audience can be obtained from a token, e.g. run:
```bash
kubectl create token default --duration=1h | cut -d. -f2 | base64 -d | jq .aud
```
The jwks token is used to authorize access to the jwks endpoint. You can obtain a token by running:
```bash
kubectl create namespace llama-stack
kubectl create serviceaccount llama-stack-auth -n llama-stack
kubectl create token llama-stack-auth -n llama-stack > llama-stack-auth-token
export TOKEN=$(cat llama-stack-auth-token)
```
Alternatively, you can configure the jwks endpoint to allow anonymous access. To do this, make sure
the `kube-apiserver` runs with `--anonymous-auth=true` to allow unauthenticated requests
and that the correct RoleBinding is created to allow the service account to access the necessary
resources. If that is not the case, you can create a RoleBinding for the service account to access
the necessary resources:
```yaml
# allow-anonymous-openid.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: allow-anonymous-openid
rules:
- nonResourceURLs: ["/openid/v1/jwks"]
verbs: ["get"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: allow-anonymous-openid
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: allow-anonymous-openid
subjects:
- kind: User
name: system:anonymous
apiGroup: rbac.authorization.k8s.io
```
And then apply the configuration:
```bash
kubectl apply -f allow-anonymous-openid.yaml
```
The provider extracts user information from the JWT token:
- Username from the `sub` claim becomes a role
- Kubernetes groups become teams
You can easily validate a request by running:
```bash
curl -s -L -H "Authorization: Bearer $(cat llama-stack-auth-token)" http://127.0.0.1:8321/v1/providers
```
#### Kubernetes Authentication Provider
The server can be configured to use Kubernetes SelfSubjectReview API to validate tokens directly against the Kubernetes API server:
```yaml
server:
auth:
provider_config:
type: "kubernetes"
api_server_url: "https://kubernetes.default.svc"
claims_mapping:
username: "roles"
groups: "roles"
uid: "uid_attr"
verify_tls: true
tls_cafile: "/path/to/ca.crt"
```
Configuration options:
- `api_server_url`: The Kubernetes API server URL (e.g., https://kubernetes.default.svc:6443)
- `verify_tls`: Whether to verify TLS certificates (default: true)
- `tls_cafile`: Path to CA certificate file for TLS verification
- `claims_mapping`: Mapping of Kubernetes user claims to access attributes
The provider validates tokens by sending a SelfSubjectReview request to the Kubernetes API server at `/apis/authentication.k8s.io/v1/selfsubjectreviews`. The provider extracts user information from the response:
- Username from the `userInfo.username` field
- Groups from the `userInfo.groups` field
- UID from the `userInfo.uid` field
To obtain a token for testing:
```bash
kubectl create namespace llama-stack
kubectl create serviceaccount llama-stack-auth -n llama-stack
kubectl create token llama-stack-auth -n llama-stack > llama-stack-auth-token
```
You can validate a request by running:
```bash
curl -s -L -H "Authorization: Bearer $(cat llama-stack-auth-token)" http://127.0.0.1:8321/v1/providers
```
#### GitHub Token Provider
Validates GitHub personal access tokens or OAuth tokens directly:
```yaml
server:
auth:
provider_config:
type: "github_token"
github_api_base_url: "https://api.github.com" # Or GitHub Enterprise URL
```
The provider fetches user information from GitHub and maps it to access attributes based on the `claims_mapping` configuration.
#### Custom Provider
Validates tokens against a custom authentication endpoint:
```yaml
server:
auth:
provider_config:
type: "custom"
endpoint: "https://auth.example.com/validate" # URL of the auth endpoint
```
The custom endpoint receives a POST request with:
```json
{
"api_key": "<token>",
"request": {
"path": "/api/v1/endpoint",
"headers": {
"content-type": "application/json",
"user-agent": "curl/7.64.1"
},
"params": {
"key": ["value"]
}
}
}
```
And must respond with:
```json
{
"access_attributes": {
"roles": ["admin", "user"],
"teams": ["ml-team", "nlp-team"],
"projects": ["llama-3", "project-x"],
"namespaces": ["research"]
},
"message": "Authentication successful"
}
```
If no access attributes are returned, the token is used as a namespace.
### Access control
When authentication is enabled, access to resources is controlled
through the `access_policy` attribute of the auth config section under
server. The value for this is a list of access rules.
Each access rule defines a list of actions either to permit or to
forbid. It may specify a principal or a resource that must match for
the rule to take effect.
Valid actions are create, read, update, and delete. The resource to
match should be specified in the form of a type qualified identifier,
e.g. model::my-model or vector_db::some-db, or a wildcard for all
resources of a type, e.g. model::*. If the principal or resource are
not specified, they will match all requests.
The valid resource types are model, shield, vector_db, dataset,
scoring_function, benchmark, tool, tool_group and session.
A rule may also specify a condition, either a 'when' or an 'unless',
with additional constraints as to where the rule applies. The
constraints supported at present are:
- 'user with <attr-value> in <attr-name>'
- 'user with <attr-value> not in <attr-name>'
- 'user is owner'
- 'user is not owner'
- 'user in owners <attr-name>'
- 'user not in owners <attr-name>'
The attributes defined for a user will depend on how the auth
configuration is defined.
When checking whether a particular action is allowed by the current
user for a resource, all the defined rules are tested in order to find
a match. If a match is found, the request is permitted or forbidden
depending on the type of rule. If no match is found, the request is
denied.
If no explicit rules are specified, a default policy is defined with
which all users can access all resources defined in config but
resources created dynamically can only be accessed by the user that
created them.
Examples:
The following restricts access to particular github users:
```yaml
server:
auth:
provider_config:
type: "github_token"
github_api_base_url: "https://api.github.com"
access_policy:
- permit:
principal: user-1
actions: [create, read, delete]
description: user-1 has full access to all resources
- permit:
principal: user-2
actions: [read]
resource: model::model-1
description: user-2 has read access to model-1 only
```
Similarly, the following restricts access to particular kubernetes
service accounts:
```yaml
server:
auth:
provider_config:
type: "oauth2_token"
audience: https://kubernetes.default.svc.cluster.local
issuer: https://kubernetes.default.svc.cluster.local
tls_cafile: /home/gsim/.minikube/ca.crt
jwks:
uri: https://kubernetes.default.svc.cluster.local:8443/openid/v1/jwks
token: ${env.TOKEN}
access_policy:
- permit:
principal: system:serviceaccount:my-namespace:my-serviceaccount
actions: [create, read, delete]
description: specific serviceaccount has full access to all resources
- permit:
principal: system:serviceaccount:default:default
actions: [read]
resource: model::model-1
description: default account has read access to model-1 only
```
The following policy, which assumes that users are defined with roles
and teams by whichever authentication system is in use, allows any
user with a valid token to use models, create resources other than
models, read and delete resources they created and read resources
created by users sharing a team with them:
```
access_policy:
- permit:
actions: [read]
resource: model::*
description: all users have read access to models
- forbid:
actions: [create, delete]
resource: model::*
unless: user with admin in roles
description: only user with admin role can create or delete models
- permit:
actions: [create, read, delete]
when: user is owner
description: users can create resources other than models and read and delete those they own
- permit:
actions: [read]
when: user in owner teams
description: any user has read access to any resource created by a user with the same team
```
#### API Endpoint Authorization with Scopes
In addition to resource-based access control, Llama Stack supports endpoint-level authorization using OAuth 2.0 style scopes. When authentication is enabled, specific API endpoints require users to have particular scopes in their authentication token.
**Scope-Gated APIs:**
The following APIs are currently gated by scopes:
- **Telemetry API** (scope: `telemetry.read`):
- `POST /telemetry/traces` - Query traces
- `GET /telemetry/traces/{trace_id}` - Get trace by ID
- `GET /telemetry/traces/{trace_id}/spans/{span_id}` - Get span by ID
- `POST /telemetry/spans/{span_id}/tree` - Get span tree
- `POST /telemetry/spans` - Query spans
- `POST /telemetry/metrics/{metric_name}` - Query metrics
**Authentication Configuration:**
For **JWT/OAuth2 providers**, scopes should be included in the JWT's claims:
```json
{
"sub": "user123",
"scope": "telemetry.read",
"aud": "llama-stack"
}
```
For **custom authentication providers**, the endpoint must return user attributes including the `scopes` array:
```json
{
"principal": "user123",
"attributes": {
"scopes": ["telemetry.read"]
}
}
```
**Behavior:**
- Users without the required scope receive a 403 Forbidden response
- When authentication is disabled, scope checks are bypassed
- Endpoints without `required_scope` work normally for all authenticated users
### Quota Configuration
The `quota` section allows you to enable server-side request throttling for both
authenticated and anonymous clients. This is useful for preventing abuse, enforcing
fairness across tenants, and controlling infrastructure costs without requiring
client-side rate limiting or external proxies.
Quotas are disabled by default. When enabled, each client is tracked using either:
* Their authenticated `client_id` (derived from the Bearer token), or
* Their IP address (fallback for anonymous requests)
Quota state is stored in a SQLite-backed key-value store, and rate limits are applied
within a configurable time window (currently only `day` is supported).
#### Example
```yaml
server:
quota:
kvstore:
type: sqlite
db_path: ./quotas.db
anonymous_max_requests: 100
authenticated_max_requests: 1000
period: day
```
#### Configuration Options
| Field | Description |
| ---------------------------- | -------------------------------------------------------------------------- |
| `kvstore` | Required. Backend storage config for tracking request counts. |
| `kvstore.type` | Must be `"sqlite"` for now. Other backends may be supported in the future. |
| `kvstore.db_path` | File path to the SQLite database. |
| `anonymous_max_requests` | Max requests per period for unauthenticated clients. |
| `authenticated_max_requests` | Max requests per period for authenticated clients. |
| `period` | Time window for quota enforcement. Only `"day"` is supported. |
> Note: if `authenticated_max_requests` is set but no authentication provider is
configured, the server will fall back to applying `anonymous_max_requests` to all
clients.
#### Example with Authentication Enabled
```yaml
server:
port: 8321
auth:
provider_config:
type: custom
endpoint: https://auth.example.com/validate
quota:
kvstore:
type: sqlite
db_path: ./quotas.db
anonymous_max_requests: 100
authenticated_max_requests: 1000
period: day
```
If a client exceeds their limit, the server responds with:
```http
HTTP/1.1 429 Too Many Requests
Content-Type: application/json
{
"error": {
"message": "Quota exceeded"
}
}
```
### CORS Configuration
Configure CORS to allow web browsers to make requests from different domains. Disabled by default.
#### Quick Setup
For development, use the simple boolean flag:
```yaml
server:
cors: true # Auto-enables localhost with any port
```
This automatically allows `http://localhost:*` and `https://localhost:*` with secure defaults.
#### Custom Configuration
For specific origins and full control:
```yaml
server:
cors:
allow_origins: ["https://myapp.com", "https://staging.myapp.com"]
allow_credentials: true
allow_methods: ["GET", "POST", "PUT", "DELETE"]
allow_headers: ["Content-Type", "Authorization"]
allow_origin_regex: "https://.*\\.example\\.com" # Optional regex pattern
expose_headers: ["X-Total-Count"]
max_age: 86400
```
#### Configuration Options
| Field | Description | Default |
| -------------------- | ---------------------------------------------- | ------- |
| `allow_origins` | List of allowed origins. Use `["*"]` for any. | `["*"]` |
| `allow_origin_regex` | Regex pattern for allowed origins (optional). | `None` |
| `allow_methods` | Allowed HTTP methods. | `["*"]` |
| `allow_headers` | Allowed headers. | `["*"]` |
| `allow_credentials` | Allow credentials (cookies, auth headers). | `false` |
| `expose_headers` | Headers exposed to browser. | `[]` |
| `max_age` | Preflight cache time (seconds). | `600` |
**Security Notes**:
- `allow_credentials: true` requires explicit origins (no wildcards)
- `cors: true` enables localhost access only (secure for development)
- For public APIs, always specify exact allowed origins
## Extending to handle Safety
Configuring Safety can be a little involved so it is instructive to go through an example.
The Safety API works with the associated Resource called a `Shield`. Providers can support various kinds of Shields. Good examples include the [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) system-safety models, or [Bedrock Guardrails](https://aws.amazon.com/bedrock/guardrails/).
To configure a Bedrock Shield, you would need to add:
- A Safety API provider instance with type `remote::bedrock`
- A Shield resource served by this provider.
```yaml
...
providers:
safety:
- provider_id: bedrock
provider_type: remote::bedrock
config:
aws_access_key_id: ${env.AWS_ACCESS_KEY_ID}
aws_secret_access_key: ${env.AWS_SECRET_ACCESS_KEY}
...
shields:
- provider_id: bedrock
params:
guardrailVersion: ${env.GUARDRAIL_VERSION}
provider_shield_id: ${env.GUARDRAIL_ID}
...
```
The situation is more involved if the Shield needs _Inference_ of an associated model. This is the case with Llama Guard. In that case, you would need to add:
- A Safety API provider instance with type `inline::llama-guard`
- An Inference API provider instance for serving the model.
- A Model resource associated with this provider.
- A Shield resource served by the Safety provider.
The yaml configuration for this setup, assuming you were using vLLM as your inference server, would look like:
```yaml
...
providers:
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config: {}
inference:
# this vLLM server serves the "normal" inference model (e.g., llama3.2:3b)
- provider_id: vllm-0
provider_type: remote::vllm
config:
url: ${env.VLLM_URL:=http://localhost:8000}
# this vLLM server serves the llama-guard model (e.g., llama-guard:3b)
- provider_id: vllm-1
provider_type: remote::vllm
config:
url: ${env.SAFETY_VLLM_URL:=http://localhost:8001}
...
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: vllm-0
provider_model_id: null
- metadata: {}
model_id: ${env.SAFETY_MODEL}
provider_id: vllm-1
provider_model_id: null
shields:
- provider_id: llama-guard
shield_id: ${env.SAFETY_MODEL} # Llama Guard shields are identified by the corresponding LlamaGuard model
provider_shield_id: null
...
```