llama-stack-mirror/docs/source/distributions/self_hosted_distro/cerebras.md
Charlie Doern 1ae61e8d5f
fix: replace all instances of --yaml-config with --config (#2196)
# What does this PR do?

start_stack.sh was using --yaml-config which is deprecated.

a bunch of distro docs also mentioned --yaml-config. Replaces all
instances and logic for --yaml-config with --config

resolves #2189

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-05-16 14:31:12 -07:00

2 KiB

Cerebras Distribution

The llamastack/distribution-cerebras distribution consists of the following provider configurations.

API Provider(s)
agents inline::meta-reference
datasetio remote::huggingface, inline::localfs
eval inline::meta-reference
inference remote::cerebras, inline::sentence-transformers
safety inline::llama-guard
scoring inline::basic, inline::llm-as-judge, inline::braintrust
telemetry inline::meta-reference
tool_runtime remote::brave-search, remote::tavily-search, inline::rag-runtime
vector_io inline::faiss, remote::chromadb, remote::pgvector

Environment Variables

The following environment variables can be configured:

  • LLAMA_STACK_PORT: Port for the Llama Stack distribution server (default: 8321)
  • CEREBRAS_API_KEY: Cerebras API Key (default: ``)

Models

The following models are available by default:

  • llama3.1-8b (aliases: meta-llama/Llama-3.1-8B-Instruct)
  • llama-3.3-70b (aliases: meta-llama/Llama-3.3-70B-Instruct)

Prerequisite: API Keys

Make sure you have access to a Cerebras API Key. You can get one by visiting cloud.cerebras.ai.

Running Llama Stack with Cerebras

You can do this via Conda (build code) or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

LLAMA_STACK_PORT=8321
docker run \
  -it \
  --pull always \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ./run.yaml:/root/my-run.yaml \
  llamastack/distribution-cerebras \
  --config /root/my-run.yaml \
  --port $LLAMA_STACK_PORT \
  --env CEREBRAS_API_KEY=$CEREBRAS_API_KEY

Via Conda

llama stack build --template cerebras --image-type conda
llama stack run ./run.yaml \
  --port 8321 \
  --env CEREBRAS_API_KEY=$CEREBRAS_API_KEY