# What does this PR do? start_stack.sh was using --yaml-config which is deprecated. a bunch of distro docs also mentioned --yaml-config. Replaces all instances and logic for --yaml-config with --config resolves #2189 Signed-off-by: Charlie Doern <cdoern@redhat.com>
10 KiB
orphan |
---|
true |
Remote vLLM Distribution
:maxdepth: 2
:hidden:
self
The llamastack/distribution-remote-vllm
distribution consists of the following provider configurations:
API | Provider(s) |
---|---|
agents | inline::meta-reference |
datasetio | remote::huggingface , inline::localfs |
eval | inline::meta-reference |
inference | remote::vllm , inline::sentence-transformers |
safety | inline::llama-guard |
scoring | inline::basic , inline::llm-as-judge , inline::braintrust |
telemetry | inline::meta-reference |
tool_runtime | remote::brave-search , remote::tavily-search , inline::rag-runtime , remote::model-context-protocol , remote::wolfram-alpha |
vector_io | inline::faiss , remote::chromadb , remote::pgvector |
You can use this distribution if you want to run an independent vLLM server for inference.
Environment Variables
The following environment variables can be configured:
LLAMA_STACK_PORT
: Port for the Llama Stack distribution server (default:8321
)INFERENCE_MODEL
: Inference model loaded into the vLLM server (default:meta-llama/Llama-3.2-3B-Instruct
)VLLM_URL
: URL of the vLLM server with the main inference model (default:http://host.docker.internal:5100/v1
)MAX_TOKENS
: Maximum number of tokens for generation (default:4096
)SAFETY_VLLM_URL
: URL of the vLLM server with the safety model (default:http://host.docker.internal:5101/v1
)SAFETY_MODEL
: Name of the safety (Llama-Guard) model to use (default:meta-llama/Llama-Guard-3-1B
)
Setting up vLLM server
In the following sections, we'll use AMD, NVIDIA or Intel GPUs to serve as hardware accelerators for the vLLM
server, which acts as both the LLM inference provider and the safety provider. Note that vLLM also
supports many other hardware accelerators and
that we only use GPUs here for demonstration purposes. Note that if you run into issues, you can include the environment variable --env VLLM_DEBUG_LOG_API_SERVER_RESPONSE=true
(available in vLLM v0.8.3 and above) in the docker run
command to enable log response from API server for debugging.
Setting up vLLM server on AMD GPU
AMD provides two main vLLM container options:
- rocm/vllm: Production-ready container
- rocm/vllm-dev: Development container with the latest vLLM features
Please check the Blog about ROCm vLLM Usage to get more details.
Here is a sample script to start a ROCm vLLM server locally via Docker:
export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export CUDA_VISIBLE_DEVICES=0
export VLLM_DIMG="rocm/vllm-dev:main"
docker run \
--pull always \
--ipc=host \
--privileged \
--shm-size 16g \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--cap-add=SYS_PTRACE \
--cap-add=CAP_SYS_ADMIN \
--security-opt seccomp=unconfined \
--security-opt apparmor=unconfined \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HIP_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" \
-p $INFERENCE_PORT:$INFERENCE_PORT \
-v ~/.cache/huggingface:/root/.cache/huggingface \
$VLLM_DIMG \
python -m vllm.entrypoints.openai.api_server \
--model $INFERENCE_MODEL \
--port $INFERENCE_PORT
Note that you'll also need to set --enable-auto-tool-choice
and --tool-call-parser
to enable tool calling in vLLM.
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like meta-llama/Llama-Guard-3-1B
using a script like:
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1
export VLLM_DIMG="rocm/vllm-dev:main"
docker run \
--pull always \
--ipc=host \
--privileged \
--shm-size 16g \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--cap-add=SYS_PTRACE \
--cap-add=CAP_SYS_ADMIN \
--security-opt seccomp=unconfined \
--security-opt apparmor=unconfined \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HIP_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" \
-p $SAFETY_PORT:$SAFETY_PORT \
-v ~/.cache/huggingface:/root/.cache/huggingface \
$VLLM_DIMG \
python -m vllm.entrypoints.openai.api_server \
--model $SAFETY_MODEL \
--port $SAFETY_PORT
Setting up vLLM server on NVIDIA GPU
Please check the vLLM Documentation to get a vLLM endpoint. Here is a sample script to start a vLLM server locally via Docker:
export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export CUDA_VISIBLE_DEVICES=0
docker run \
--pull always \
--runtime nvidia \
--gpus $CUDA_VISIBLE_DEVICES \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
-p $INFERENCE_PORT:$INFERENCE_PORT \
--ipc=host \
vllm/vllm-openai:latest \
--gpu-memory-utilization 0.7 \
--model $INFERENCE_MODEL \
--port $INFERENCE_PORT
Note that you'll also need to set --enable-auto-tool-choice
and --tool-call-parser
to enable tool calling in vLLM.
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like meta-llama/Llama-Guard-3-1B
using a script like:
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1
docker run \
--pull always \
--runtime nvidia \
--gpus $CUDA_VISIBLE_DEVICES \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
-p $SAFETY_PORT:$SAFETY_PORT \
--ipc=host \
vllm/vllm-openai:latest \
--gpu-memory-utilization 0.7 \
--model $SAFETY_MODEL \
--port $SAFETY_PORT
Setting up vLLM server on Intel GPU
Refer to vLLM Documentation for XPU to get a vLLM endpoint. In addition to vLLM side setup which guides towards installing vLLM from sources orself-building vLLM Docker container, Intel provides prebuilt vLLM container to use on systems with Intel GPUs supported by PyTorch XPU backend:
Here is a sample script to start a vLLM server locally via Docker using Intel provided container:
export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
export ZE_AFFINITY_MASK=0
docker run \
--pull always \
--device /dev/dri \
-v /dev/dri/by-path:/dev/dri/by-path \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK \
-p $INFERENCE_PORT:$INFERENCE_PORT \
--ipc=host \
intel/vllm:xpu \
--gpu-memory-utilization 0.7 \
--model $INFERENCE_MODEL \
--port $INFERENCE_PORT
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like meta-llama/Llama-Guard-3-1B
using a script like:
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export ZE_AFFINITY_MASK=1
docker run \
--pull always \
--device /dev/dri \
-v /dev/dri/by-path:/dev/dri/by-path \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK \
-p $SAFETY_PORT:$SAFETY_PORT \
--ipc=host \
intel/vllm:xpu \
--gpu-memory-utilization 0.7 \
--model $SAFETY_MODEL \
--port $SAFETY_PORT
Running Llama Stack
Now you are ready to run Llama Stack with vLLM as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export LLAMA_STACK_PORT=8321
# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack
docker run \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./llama_stack/templates/remote-vllm/run.yaml:/root/my-run.yaml \
llamastack/distribution-remote-vllm \
--config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1
If you are using Llama Stack Safety / Shield APIs, use:
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack
docker run \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/remote-vllm/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-remote-vllm \
--config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1 \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env SAFETY_VLLM_URL=http://host.docker.internal:$SAFETY_PORT/v1
Via Conda
Make sure you have done uv pip install llama-stack
and have the Llama Stack CLI available.
export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export LLAMA_STACK_PORT=8321
cd distributions/remote-vllm
llama stack build --template remote-vllm --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://localhost:$INFERENCE_PORT/v1
If you are using Llama Stack Safety / Shield APIs, use:
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
llama stack run ./run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://localhost:$INFERENCE_PORT/v1 \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env SAFETY_VLLM_URL=http://localhost:$SAFETY_PORT/v1