# What does this PR do? PR #639 introduced the notion of Tools API and ability to invoke tools through API just as any resource. This PR changes the Agents to start using the Tools API to invoke tools. Major changes include: 1) Ability to specify tool groups with AgentConfig 2) Agent gets the corresponding tool definitions for the specified tools and pass along to the model 3) Attachements are now named as Documents and their behavior is mostly unchanged from user perspective 4) You can specify args that can be injected to a tool call through Agent config. This is especially useful in case of memory tool, where you want the tool to operate on a specific memory bank. 5) You can also register tool groups with args, which lets the agent inject these as well into the tool call. 6) All tests have been migrated to use new tools API and fixtures including client SDK tests 7) Telemetry just works with tools API because of our trace protocol decorator ## Test Plan ``` pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct pytest -s -v -k together llama_stack/providers/tests/tools/test_tools.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py ``` run.yaml: https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994 Notebook: https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
4.3 KiB
orphan |
---|
true |
TGI Distribution
:maxdepth: 2
:hidden:
self
The llamastack/distribution-tgi
distribution consists of the following provider configurations.
API | Provider(s) |
---|---|
agents | inline::meta-reference |
datasetio | remote::huggingface , inline::localfs |
eval | inline::meta-reference |
inference | remote::tgi |
memory | inline::faiss , remote::chromadb , remote::pgvector |
safety | inline::llama-guard |
scoring | inline::basic , inline::llm-as-judge , inline::braintrust |
telemetry | inline::meta-reference |
tool_runtime | remote::brave-search , remote::tavily-search , inline::code-interpreter , inline::memory-runtime |
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
Environment Variables
The following environment variables can be configured:
LLAMASTACK_PORT
: Port for the Llama Stack distribution server (default:5001
)INFERENCE_MODEL
: Inference model loaded into the TGI server (default:meta-llama/Llama-3.2-3B-Instruct
)TGI_URL
: URL of the TGI server with the main inference model (default:http://127.0.0.1:8080}/v1
)TGI_SAFETY_URL
: URL of the TGI server with the safety model (default:http://127.0.0.1:8081/v1
)SAFETY_MODEL
: Name of the safety (Llama-Guard) model to use (default:meta-llama/Llama-Guard-3-1B
)
Setting up TGI server
Please check the TGI Getting Started Guide to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker:
export INFERENCE_PORT=8080
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export CUDA_VISIBLE_DEVICES=0
docker run --rm -it \
-v $HOME/.cache/huggingface:/data \
-p $INFERENCE_PORT:$INFERENCE_PORT \
--gpus $CUDA_VISIBLE_DEVICES \
ghcr.io/huggingface/text-generation-inference:2.3.1 \
--dtype bfloat16 \
--usage-stats off \
--sharded false \
--cuda-memory-fraction 0.7 \
--model-id $INFERENCE_MODEL \
--port $INFERENCE_PORT
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like meta-llama/Llama-Guard-3-1B
using a script like:
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1
docker run --rm -it \
-v $HOME/.cache/huggingface:/data \
-p $SAFETY_PORT:$SAFETY_PORT \
--gpus $CUDA_VISIBLE_DEVICES \
ghcr.io/huggingface/text-generation-inference:2.3.1 \
--dtype bfloat16 \
--usage-stats off \
--sharded false \
--model-id $SAFETY_MODEL \
--port $SAFETY_PORT
Running Llama Stack
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-tgi \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT
If you are using Llama Stack Safety / Shield APIs, use:
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-tgi \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env TGI_SAFETY_URL=http://host.docker.internal:$SAFETY_PORT
Via Conda
Make sure you have done pip install llama-stack
and have the Llama Stack CLI available.
llama stack build --template tgi --image-type conda
llama stack run ./run.yaml
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT
If you are using Llama Stack Safety / Shield APIs, use:
llama stack run ./run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env TGI_SAFETY_URL=http://127.0.0.1:$SAFETY_PORT