- keep old provider table in README.md - get full list of provider table into "docs" index.md - move docker images for distro we do not maintain into a separate table Signed-off-by: Wen Zhou <wenzhou@redhat.com>
9.5 KiB
Providers Overview
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
- LLM inference providers (e.g., Meta Reference, Ollama, Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, OpenAI, Anthropic, Gemini, WatsonX, etc.),
- Vector databases (e.g., FAISS, SQLite-Vec, ChromaDB, Weaviate, Qdrant, Milvus, PGVector, etc.),
- Safety providers (e.g., Meta's Llama Guard, Prompt Guard, Code Scanner, AWS Bedrock Guardrails, etc.),
- Tool Runtime providers (e.g., RAG Runtime, Brave Search, etc.)
Providers come in two flavors:
- Remote: the provider runs as a separate service external to the Llama Stack codebase. Llama Stack contains a small amount of adapter code.
- Inline: the provider is fully specified and implemented within the Llama Stack codebase. It may be a simple wrapper around an existing library, or a full fledged implementation within Llama Stack.
Importantly, Llama Stack always strives to provide at least one fully inline provider for each API so you can iterate on a fully featured environment locally.
Available Providers
Here is a comprehensive list of all available API providers in Llama Stack:
| API Provider Builder | Environments | Agents | Inference | VectorIO | Safety | Telemetry | Post Training | Eval | DatasetIO | Tool Runtime | Scoring |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Meta Reference | Single Node | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | |
| SambaNova | Hosted | ✅ | ✅ | ||||||||
| Cerebras | Hosted | ✅ | |||||||||
| Fireworks | Hosted | ✅ | ✅ | ✅ | |||||||
| AWS Bedrock | Hosted | ✅ | ✅ | ||||||||
| Together | Hosted | ✅ | ✅ | ✅ | |||||||
| Groq | Hosted | ✅ | |||||||||
| Ollama | Single Node | ✅ | |||||||||
| TGI | Hosted/Single Node | ✅ | |||||||||
| NVIDIA NIM | Hosted/Single Node | ✅ | ✅ | ||||||||
| ChromaDB | Hosted/Single Node | ✅ | |||||||||
| PG Vector | Single Node | ✅ | |||||||||
| vLLM | Single Node | ✅ | |||||||||
| OpenAI | Hosted | ✅ | |||||||||
| Anthropic | Hosted | ✅ | |||||||||
| Gemini | Hosted | ✅ | |||||||||
| WatsonX | Hosted | ✅ | |||||||||
| HuggingFace | Single Node | ✅ | ✅ | ||||||||
| TorchTune | Single Node | ✅ | |||||||||
| NVIDIA NEMO | Hosted | ✅ | ✅ | ✅ | ✅ | ✅ | |||||
| NVIDIA | Hosted | ✅ | ✅ | ✅ | |||||||
| FAISS | Single Node | ✅ | |||||||||
| SQLite-Vec | Single Node | ✅ | |||||||||
| Qdrant | Hosted/Single Node | ✅ | |||||||||
| Weaviate | Hosted | ✅ | |||||||||
| Milvus | Hosted/Single Node | ✅ | |||||||||
| Prompt Guard | Single Node | ✅ | |||||||||
| Llama Guard | Single Node | ✅ | |||||||||
| Code Scanner | Single Node | ✅ | |||||||||
| Brave Search | Hosted | ✅ | |||||||||
| Bing Search | Hosted | ✅ | |||||||||
| RAG Runtime | Single Node | ✅ | |||||||||
| Model Context Protocol | Hosted | ✅ | |||||||||
| Sentence Transformers | Single Node | ✅ | |||||||||
| Braintrust | Single Node | ✅ | |||||||||
| Basic | Single Node | ✅ | |||||||||
| LLM-as-Judge | Single Node | ✅ | |||||||||
| Databricks | Hosted | ✅ | |||||||||
| RunPod | Hosted | ✅ | |||||||||
| Passthrough | Hosted | ✅ | |||||||||
| PyTorch ExecuTorch | On-device iOS, Android | ✅ | ✅ |
External Providers
Llama Stack supports external providers that live outside of the main codebase. This allows you to create and maintain your own providers independently.
:maxdepth: 1
external
Agents
Run multi-step agentic workflows with LLMs with tool usage, memory (RAG), etc.
:maxdepth: 1
agents/index
DatasetIO
Interfaces with datasets and data loaders.
:maxdepth: 1
datasetio/index
Eval
Generates outputs (via Inference or Agents) and perform scoring.
:maxdepth: 1
eval/index
Inference
Runs inference with an LLM.
:maxdepth: 1
inference/index
Post Training
Fine-tunes a model.
:maxdepth: 1
post_training/index
Safety
Applies safety policies to the output at a Systems (not only model) level.
:maxdepth: 1
safety/index
Scoring
Evaluates the outputs of the system.
:maxdepth: 1
scoring/index
Telemetry
Collects telemetry data from the system.
:maxdepth: 1
telemetry/index
Tool Runtime
Is associated with the ToolGroup resouces.
:maxdepth: 1
tool_runtime/index
Vector IO
Vector IO refers to operations on vector databases, such as adding documents, searching, and deleting documents. Vector IO plays a crucial role in Retreival Augmented Generation (RAG), where the vector io and database are used to store and retrieve documents for retrieval.
:maxdepth: 1
vector_io/index