llama-stack-mirror/llama_stack/apis/tools/rag_tool.py
Yuan Tang 34ab7a3b6c
Fix precommit check after moving to ruff (#927)
Lint check in main branch is failing. This fixes the lint check after we
moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We
need to move to a `ruff.toml` file as well as fixing and ignoring some
additional checks.

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-02 06:46:45 -08:00

93 lines
2.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Union
from llama_models.schema_utils import json_schema_type, register_schema, webmethod
from pydantic import BaseModel, Field
from typing_extensions import Annotated, Protocol, runtime_checkable
from llama_stack.apis.common.content_types import InterleavedContent, URL
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
@json_schema_type
class RAGDocument(BaseModel):
document_id: str
content: InterleavedContent | URL
mime_type: str | None = None
metadata: Dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class RAGQueryResult(BaseModel):
content: Optional[InterleavedContent] = None
@json_schema_type
class RAGQueryGenerator(Enum):
default = "default"
llm = "llm"
custom = "custom"
@json_schema_type
class DefaultRAGQueryGeneratorConfig(BaseModel):
type: Literal["default"] = "default"
separator: str = " "
@json_schema_type
class LLMRAGQueryGeneratorConfig(BaseModel):
type: Literal["llm"] = "llm"
model: str
template: str
RAGQueryGeneratorConfig = register_schema(
Annotated[
Union[
DefaultRAGQueryGeneratorConfig,
LLMRAGQueryGeneratorConfig,
],
Field(discriminator="type"),
],
name="RAGQueryGeneratorConfig",
)
@json_schema_type
class RAGQueryConfig(BaseModel):
# This config defines how a query is generated using the messages
# for memory bank retrieval.
query_generator_config: RAGQueryGeneratorConfig = Field(default=DefaultRAGQueryGeneratorConfig())
max_tokens_in_context: int = 4096
max_chunks: int = 5
@runtime_checkable
@trace_protocol
class RAGToolRuntime(Protocol):
@webmethod(route="/tool-runtime/rag-tool/insert", method="POST")
async def insert(
self,
documents: List[RAGDocument],
vector_db_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
"""Index documents so they can be used by the RAG system"""
...
@webmethod(route="/tool-runtime/rag-tool/query", method="POST")
async def query(
self,
content: InterleavedContent,
vector_db_ids: List[str],
query_config: Optional[RAGQueryConfig] = None,
) -> RAGQueryResult:
"""Query the RAG system for context; typically invoked by the agent"""
...