llama-stack-mirror/docs/source/providers/vector_io/inline_chromadb.md
Francisco Javier Arceo 67307a8949 updating starter to include kv store path and update unit test packages to include chromadb inline
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-07-23 16:04:41 -04:00

1.5 KiB

inline::chromadb

Description

Chroma is an inline and remote vector database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database. That means you're not limited to storing vectors in memory or in a separate service.

Features

Chroma supports:

  • Store embeddings and their metadata
  • Vector search
  • Full-text search
  • Document storage
  • Metadata filtering
  • Multi-modal retrieval

Usage

To use Chrome in your Llama Stack project, follow these steps:

  1. Install the necessary dependencies.
  2. Configure your Llama Stack project to use chroma.
  3. Start storing and querying vectors.

Installation

You can install chroma using pip:

pip install chromadb

Documentation

See Chroma's documentation for more details about Chroma in general.

Configuration

Field Type Required Default Description
db_path <class 'str'> No PydanticUndefined
kvstore utils.kvstore.config.RedisKVStoreConfig | utils.kvstore.config.SqliteKVStoreConfig | utils.kvstore.config.PostgresKVStoreConfig | utils.kvstore.config.MongoDBKVStoreConfig No sqlite Config for KV store backend

Sample Configuration

db_path: ${env.CHROMADB_PATH}
kvstore:
  type: sqlite
  db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/chroma_inline_registry.db