llama-stack-mirror/llama_stack/providers/tests/eval/test_eval.py
Yuan Tang 34ab7a3b6c
Fix precommit check after moving to ruff (#927)
Lint check in main branch is failing. This fixes the lint check after we
moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We
need to move to a `ruff.toml` file as well as fixing and ignoring some
additional checks.

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-02 06:46:45 -08:00

187 lines
6.8 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.common.type_system import ChatCompletionInputType, StringType
from llama_stack.apis.eval.eval import (
AppEvalTaskConfig,
BenchmarkEvalTaskConfig,
ModelCandidate,
)
from llama_stack.apis.inference import SamplingParams
from llama_stack.apis.scoring_functions import LLMAsJudgeScoringFnParams
from llama_stack.distribution.datatypes import Api
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
from .constants import JUDGE_PROMPT
# How to run this test:
#
# pytest llama_stack/providers/tests/eval/test_eval.py
# -m "meta_reference_eval_together_inference_huggingface_datasetio"
# -v -s --tb=short --disable-warnings
class Testeval:
@pytest.mark.asyncio
async def test_eval_tasks_list(self, eval_stack):
# NOTE: this needs you to ensure that you are starting from a clean state
# but so far we don't have an unregister API unfortunately, so be careful
eval_tasks_impl = eval_stack[Api.eval_tasks]
response = await eval_tasks_impl.list_eval_tasks()
assert isinstance(response, list)
@pytest.mark.asyncio
async def test_eval_evaluate_rows(self, eval_stack, inference_model, judge_model):
eval_impl, eval_tasks_impl, datasetio_impl, datasets_impl, models_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
eval_stack[Api.datasetio],
eval_stack[Api.datasets],
eval_stack[Api.models],
)
await register_dataset(datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval")
response = await datasets_impl.list_datasets()
rows = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset_for_eval",
rows_in_page=3,
)
assert len(rows.rows) == 3
scoring_functions = [
"basic::equality",
]
task_id = "meta-reference::app_eval"
await eval_tasks_impl.register_eval_task(
eval_task_id=task_id,
dataset_id="test_dataset_for_eval",
scoring_functions=scoring_functions,
)
response = await eval_impl.evaluate_rows(
task_id=task_id,
input_rows=rows.rows,
scoring_functions=scoring_functions,
task_config=AppEvalTaskConfig(
eval_candidate=ModelCandidate(
model=inference_model,
sampling_params=SamplingParams(),
),
scoring_params={
"meta-reference::llm_as_judge_base": LLMAsJudgeScoringFnParams(
judge_model=judge_model,
prompt_template=JUDGE_PROMPT,
judge_score_regexes=[
r"Total rating: (\d+)",
r"rating: (\d+)",
r"Rating: (\d+)",
],
)
},
),
)
assert len(response.generations) == 3
assert "basic::equality" in response.scores
@pytest.mark.asyncio
async def test_eval_run_eval(self, eval_stack, inference_model, judge_model):
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
eval_stack[Api.datasets],
eval_stack[Api.models],
)
await register_dataset(datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval")
scoring_functions = [
"basic::subset_of",
]
task_id = "meta-reference::app_eval-2"
await eval_tasks_impl.register_eval_task(
eval_task_id=task_id,
dataset_id="test_dataset_for_eval",
scoring_functions=scoring_functions,
)
response = await eval_impl.run_eval(
task_id=task_id,
task_config=AppEvalTaskConfig(
eval_candidate=ModelCandidate(
model=inference_model,
sampling_params=SamplingParams(),
),
),
)
assert response.job_id == "0"
job_status = await eval_impl.job_status(task_id, response.job_id)
assert job_status and job_status.value == "completed"
eval_response = await eval_impl.job_result(task_id, response.job_id)
assert eval_response is not None
assert len(eval_response.generations) == 5
assert "basic::subset_of" in eval_response.scores
@pytest.mark.asyncio
async def test_eval_run_benchmark_eval(self, eval_stack, inference_model):
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
eval_stack[Api.datasets],
eval_stack[Api.models],
)
response = await datasets_impl.list_datasets()
assert len(response) > 0
if response[0].provider_id != "huggingface":
pytest.skip("Only huggingface provider supports pre-registered remote datasets")
await datasets_impl.register_dataset(
dataset_id="mmlu",
dataset_schema={
"input_query": StringType(),
"expected_answer": StringType(),
"chat_completion_input": ChatCompletionInputType(),
},
url=URL(uri="https://huggingface.co/datasets/llamastack/evals"),
metadata={
"path": "llamastack/evals",
"name": "evals__mmlu__details",
"split": "train",
},
)
# register eval task
await eval_tasks_impl.register_eval_task(
eval_task_id="meta-reference-mmlu",
dataset_id="mmlu",
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
)
# list benchmarks
response = await eval_tasks_impl.list_eval_tasks()
assert len(response) > 0
benchmark_id = "meta-reference-mmlu"
response = await eval_impl.run_eval(
task_id=benchmark_id,
task_config=BenchmarkEvalTaskConfig(
eval_candidate=ModelCandidate(
model=inference_model,
sampling_params=SamplingParams(),
),
num_examples=3,
),
)
job_status = await eval_impl.job_status(benchmark_id, response.job_id)
assert job_status and job_status.value == "completed"
eval_response = await eval_impl.job_result(benchmark_id, response.job_id)
assert eval_response is not None
assert len(eval_response.generations) == 3