mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
Lint check in main branch is failing. This fixes the lint check after we moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We need to move to a `ruff.toml` file as well as fixing and ignoring some additional checks. Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
110 lines
3.5 KiB
Python
110 lines
3.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import os
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.tools import RAGDocument, RAGQueryResult, ToolInvocationResult
|
|
from llama_stack.providers.datatypes import Api
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_search_query():
|
|
return "What are the latest developments in quantum computing?"
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_wolfram_alpha_query():
|
|
return "What is the square root of 16?"
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_documents():
|
|
urls = [
|
|
"memory_optimizations.rst",
|
|
"chat.rst",
|
|
"llama3.rst",
|
|
"datasets.rst",
|
|
"qat_finetune.rst",
|
|
"lora_finetune.rst",
|
|
]
|
|
return [
|
|
RAGDocument(
|
|
document_id=f"num-{i}",
|
|
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
|
|
mime_type="text/plain",
|
|
metadata={},
|
|
)
|
|
for i, url in enumerate(urls)
|
|
]
|
|
|
|
|
|
class TestTools:
|
|
@pytest.mark.asyncio
|
|
async def test_web_search_tool(self, tools_stack, sample_search_query):
|
|
"""Test the web search tool functionality."""
|
|
if "TAVILY_SEARCH_API_KEY" not in os.environ:
|
|
pytest.skip("TAVILY_SEARCH_API_KEY not set, skipping test")
|
|
|
|
tools_impl = tools_stack.impls[Api.tool_runtime]
|
|
|
|
# Execute the tool
|
|
response = await tools_impl.invoke_tool(tool_name="web_search", kwargs={"query": sample_search_query})
|
|
|
|
# Verify the response
|
|
assert isinstance(response, ToolInvocationResult)
|
|
assert response.content is not None
|
|
assert len(response.content) > 0
|
|
assert isinstance(response.content, str)
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_wolfram_alpha_tool(self, tools_stack, sample_wolfram_alpha_query):
|
|
"""Test the wolfram alpha tool functionality."""
|
|
if "WOLFRAM_ALPHA_API_KEY" not in os.environ:
|
|
pytest.skip("WOLFRAM_ALPHA_API_KEY not set, skipping test")
|
|
|
|
tools_impl = tools_stack.impls[Api.tool_runtime]
|
|
|
|
response = await tools_impl.invoke_tool(tool_name="wolfram_alpha", kwargs={"query": sample_wolfram_alpha_query})
|
|
|
|
# Verify the response
|
|
assert isinstance(response, ToolInvocationResult)
|
|
assert response.content is not None
|
|
assert len(response.content) > 0
|
|
assert isinstance(response.content, str)
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_rag_tool(self, tools_stack, sample_documents):
|
|
"""Test the memory tool functionality."""
|
|
vector_dbs_impl = tools_stack.impls[Api.vector_dbs]
|
|
tools_impl = tools_stack.impls[Api.tool_runtime]
|
|
|
|
# Register memory bank
|
|
await vector_dbs_impl.register_vector_db(
|
|
vector_db_id="test_bank",
|
|
embedding_model="all-MiniLM-L6-v2",
|
|
embedding_dimension=384,
|
|
provider_id="faiss",
|
|
)
|
|
|
|
# Insert documents into memory
|
|
await tools_impl.rag_tool.insert(
|
|
documents=sample_documents,
|
|
vector_db_id="test_bank",
|
|
chunk_size_in_tokens=512,
|
|
)
|
|
|
|
# Execute the memory tool
|
|
response = await tools_impl.rag_tool.query(
|
|
content="What are the main topics covered in the documentation?",
|
|
vector_db_ids=["test_bank"],
|
|
)
|
|
|
|
# Verify the response
|
|
assert isinstance(response, RAGQueryResult)
|
|
assert response.content is not None
|
|
assert len(response.content) > 0
|