mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? This PR adds support for NVIDIA's NeMo Evaluator API to the Llama Stack eval module. The integration enables users to evaluate models via the Llama Stack interface. ## Test Plan [Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.*] 1. Added unit tests and successfully ran from root of project: `./scripts/unit-tests.sh tests/unit/providers/nvidia/test_eval.py` ``` tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_job_cancel PASSED tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_job_result PASSED tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_job_status PASSED tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_register_benchmark PASSED tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_run_eval PASSED ``` 2. Verified I could build the Llama Stack image: `LLAMA_STACK_DIR=$(pwd) llama stack build --template nvidia --image-type venv` Documentation added to `llama_stack/providers/remote/eval/nvidia/README.md` --------- Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
2.5 KiB
2.5 KiB
NVIDIA NeMo Evaluator Eval Provider
Overview
For the first integration, Benchmarks are mapped to Evaluation Configs on in the NeMo Evaluator. The full evaluation config object is provided as part of the meta-data. The dataset_id
and scoring_functions
are not used.
Below are a few examples of how to register a benchmark, which in turn will create an evaluation config in NeMo Evaluator and how to trigger an evaluation.
Example for register an academic benchmark
POST /eval/benchmarks
{
"benchmark_id": "mmlu",
"dataset_id": "",
"scoring_functions": [],
"metadata": {
"type": "mmlu"
}
}
Example for register a custom evaluation
POST /eval/benchmarks
{
"benchmark_id": "my-custom-benchmark",
"dataset_id": "",
"scoring_functions": [],
"metadata": {
"type": "custom",
"params": {
"parallelism": 8
},
"tasks": {
"qa": {
"type": "completion",
"params": {
"template": {
"prompt": "{{prompt}}",
"max_tokens": 200
}
},
"dataset": {
"files_url": "hf://datasets/default/sample-basic-test/testing/testing.jsonl"
},
"metrics": {
"bleu": {
"type": "bleu",
"params": {
"references": [
"{{ideal_response}}"
]
}
}
}
}
}
}
}
Example for triggering a benchmark/custom evaluation
POST /eval/benchmarks/{benchmark_id}/jobs
{
"benchmark_id": "my-custom-benchmark",
"benchmark_config": {
"eval_candidate": {
"type": "model",
"model": "meta-llama/Llama3.1-8B-Instruct",
"sampling_params": {
"max_tokens": 100,
"temperature": 0.7
}
},
"scoring_params": {}
}
}
Response example:
{
"job_id": "eval-1234",
"status": "in_progress"
}
Example for getting the status of a job
GET /eval/benchmarks/{benchmark_id}/jobs/{job_id}
Response example:
{
"job_id": "eval-1234",
"status": "in_progress"
}
Example for cancelling a job
POST /eval/benchmarks/{benchmark_id}/jobs/{job_id}/cancel
Example for getting the results
GET /eval/benchmarks/{benchmark_id}/results
{
"generations": [],
"scores": {
"{benchmark_id}": {
"score_rows": [],
"aggregated_results": {
"tasks": {},
"groups": {}
}
}
}
}