mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-28 02:40:25 +00:00
Implement remote ramalama provider using AsyncOpenAI as the client since ramalama doesn't have its own Async library. Ramalama is similar to ollama, as it is a lightweight local inference server. However, it runs by default in a containerized mode. RAMALAMA_URL is http://localhost:8080 by default Signed-off-by: Charlie Doern <cdoern@redhat.com>
188 lines
6.6 KiB
Python
188 lines
6.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
from typing import AsyncGenerator, List, Optional
|
|
|
|
from openai import AsyncOpenAI, BadRequestError
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
InterleavedContent,
|
|
InterleavedContentItem,
|
|
TextContentItem,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
CompletionRequest,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.apis.models import Model
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
ModelRegistryHelper,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
convert_openai_chat_completion_choice,
|
|
convert_openai_chat_completion_stream,
|
|
)
|
|
|
|
from .models import model_entries
|
|
from .openai_utils import (
|
|
convert_chat_completion_request,
|
|
convert_completion_request,
|
|
convert_openai_completion_choice,
|
|
convert_openai_completion_stream,
|
|
)
|
|
|
|
logger = get_logger(name=__name__, category="inference")
|
|
|
|
|
|
class RamalamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|
def __init__(self, url: str) -> None:
|
|
self.register_helper = ModelRegistryHelper(model_entries)
|
|
self.url = url
|
|
|
|
async def initialize(self) -> None:
|
|
logger.info(f"checking connectivity to Ramalama at `{self.url}`...")
|
|
self.client = AsyncOpenAI(base_url=self.url, api_key="NO KEY")
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
request = convert_completion_request(
|
|
request=CompletionRequest(
|
|
model=model.provider_resource_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
)
|
|
|
|
response = await self.client.completions.create(**request)
|
|
if stream:
|
|
return convert_openai_completion_stream(response)
|
|
else:
|
|
# we pass n=1 to get only one completion
|
|
return convert_openai_completion_choice(response.choices[0])
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
request = await convert_chat_completion_request(
|
|
request=ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
response_format=response_format,
|
|
tool_config=tool_config,
|
|
),
|
|
n=1,
|
|
)
|
|
s = await self.client.chat.completions.create(**request)
|
|
if stream:
|
|
return convert_openai_chat_completion_stream(s, enable_incremental_tool_calls=False)
|
|
else:
|
|
# we pass n=1 to get only one completion
|
|
return convert_openai_chat_completion_choice(s.choices[0])
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[str] | List[InterleavedContentItem],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents]
|
|
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
|
|
model = self.get_provider_model_id(model_id)
|
|
|
|
extra_body = {}
|
|
|
|
if text_truncation is not None:
|
|
text_truncation_options = {
|
|
TextTruncation.none: "NONE",
|
|
TextTruncation.end: "END",
|
|
TextTruncation.start: "START",
|
|
}
|
|
extra_body["truncate"] = text_truncation_options[text_truncation]
|
|
|
|
if output_dimension is not None:
|
|
extra_body["dimensions"] = output_dimension
|
|
|
|
if task_type is not None:
|
|
task_type_options = {
|
|
EmbeddingTaskType.document: "passage",
|
|
EmbeddingTaskType.query: "query",
|
|
}
|
|
extra_body["input_type"] = task_type_options[task_type]
|
|
|
|
try:
|
|
response = await self._client.embeddings.create(
|
|
model=model,
|
|
input=input,
|
|
extra_body=extra_body,
|
|
)
|
|
except BadRequestError as e:
|
|
raise ValueError(f"Failed to get embeddings: {e}") from e
|
|
|
|
return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data])
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
model = await self.register_helper.register_model(model)
|
|
res = await self.client.models.list()
|
|
available_models = [m.id async for m in res]
|
|
if model.provider_resource_id not in available_models:
|
|
raise ValueError(
|
|
f"Model {model.provider_resource_id} is not being served by vLLM. "
|
|
f"Available models: {', '.join(available_models)}"
|
|
)
|
|
return model
|