## What does this PR do? See issue: #747 -- `uv` is just plain better. This PR does the bare minimum of replacing `pip install` by `uv pip install` and ensuring `uv` exists in the environment. ## Test Plan First: create new conda, `uv pip install -e .` on `llama-stack` -- all is good. Next: run `llama stack build --template together` followed by `llama stack run together` -- all good Next: run `llama stack build --template together --image-name yoyo` followed by `llama stack run together --image-name yoyo` -- all good Next: fresh conda and `uv pip install -e .` and `llama stack build --template together --image-type venv` -- all good. Docker: `llama stack build --template together --image-type container` works!
4.6 KiB
orphan |
---|
true |
Ollama Distribution
:maxdepth: 2
:hidden:
self
The llamastack/distribution-{{ name }}
distribution consists of the following provider configurations.
{{ providers_table }}
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.
{%- if run_config_env_vars %}
Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in run_config_env_vars.items() %}
{{ var }}
: {{ description }} (default:{{ default_value }}
) {% endfor %} {% endif %}
Setting up Ollama server
Please check the Ollama Documentation on how to install and run Ollama. After installing Ollama, you need to run ollama serve
to start the server.
In order to load models, you can run:
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
# ollama names this model differently, and we must use the ollama name when loading the model
export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
# ollama names this model differently, and we must use the ollama name when loading the model
export OLLAMA_SAFETY_MODEL="llama-guard3:1b"
ollama run $OLLAMA_SAFETY_MODEL --keepalive 60m
Running Llama Stack
Now you are ready to run Llama Stack with Ollama as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
export LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-{{ name }} \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
If you are using Llama Stack Safety / Shield APIs, use:
# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/ollama/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-{{ name }} \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
Via Conda
Make sure you have done uv pip install llama-stack
and have the Llama Stack CLI available.
export LLAMA_STACK_PORT=5001
llama stack build --template {{ name }} --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://localhost:11434
If you are using Llama Stack Safety / Shield APIs, use:
llama stack run ./run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env OLLAMA_URL=http://localhost:11434
(Optional) Update Model Serving Configuration
Please check the [model_aliases](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/ollama.py#L45) for the supported Ollama models.
To serve a new model with ollama
ollama run <model_name>
To make sure that the model is being served correctly, run ollama ps
to get a list of models being served by ollama.
$ ollama ps
NAME ID SIZE PROCESSOR UNTIL
llama3.1:8b-instruct-fp16 4aacac419454 17 GB 100% GPU 4 minutes from now
To verify that the model served by ollama is correctly connected to Llama Stack server
$ llama-stack-client models list
+----------------------+----------------------+---------------+-----------------------------------------------+
| identifier | llama_model | provider_id | metadata |
+======================+======================+===============+===============================================+
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | ollama0 | {'ollama_model': 'llama3.1:8b-instruct-fp16'} |
+----------------------+----------------------+---------------+-----------------------------------------------+