llama-stack-mirror/llama_stack/providers/remote/inference/nvidia/NVIDIA.md
Francisco Javier Arceo 6620b625f1 adding logo and favicon
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

chore: Enable keyword search for Milvus inline (#3073)

With https://github.com/milvus-io/milvus-lite/pull/294 - Milvus Lite
supports keyword search using BM25. While introducing keyword search we
had explicitly disabled it for inline milvus. This PR removes the need
for the check, and enables `inline::milvus` for tests.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

Run llama stack with `inline::milvus` enabled:

```
pytest tests/integration/vector_io/test_openai_vector_stores.py::test_openai_vector_store_search_modes --stack-config=http://localhost:8321 --embedding-model=all-MiniLM-L6-v2 -v
```

```
INFO     2025-08-07 17:06:20,932 tests.integration.conftest:64 tests: Setting DISABLE_CODE_SANDBOX=1 for macOS
=========================================================================================== test session starts ============================================================================================
platform darwin -- Python 3.12.11, pytest-7.4.4, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.12.11', 'Platform': 'macOS-14.7.6-arm64-arm-64bit', 'Packages': {'pytest': '7.4.4', 'pluggy': '1.5.0'}, 'Plugins': {'asyncio': '0.23.8', 'cov': '6.0.0', 'timeout': '2.2.0', 'socket': '0.7.0', 'html': '3.1.1', 'langsmith': '0.3.39', 'anyio': '4.8.0', 'metadata': '3.0.0'}}
rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack
configfile: pyproject.toml
plugins: asyncio-0.23.8, cov-6.0.0, timeout-2.2.0, socket-0.7.0, html-3.1.1, langsmith-0.3.39, anyio-4.8.0, metadata-3.0.0
asyncio: mode=Mode.AUTO
collected 3 items

tests/integration/vector_io/test_openai_vector_stores.py::test_openai_vector_store_search_modes[None-None-all-MiniLM-L6-v2-None-384-vector] PASSED                                                   [ 33%]
tests/integration/vector_io/test_openai_vector_stores.py::test_openai_vector_store_search_modes[None-None-all-MiniLM-L6-v2-None-384-keyword] PASSED                                                  [ 66%]
tests/integration/vector_io/test_openai_vector_stores.py::test_openai_vector_store_search_modes[None-None-all-MiniLM-L6-v2-None-384-hybrid] PASSED                                                   [100%]

============================================================================================ 3 passed in 4.75s =============================================================================================
```

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>

chore: Fixup main pre commit (#3204)

build: Bump version to 0.2.18

chore: Faster npm pre-commit (#3206)

Adds npm to pre-commit.yml installation and caches ui
Removes node installation during pre-commit.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

chiecking in for tonight, wip moving to agents api

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

remove log

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

updated

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

fix: disable ui-prettier & ui-eslint (#3207)

chore(pre-commit): add pre-commit hook to enforce llama_stack logger usage (#3061)

This PR adds a step in pre-commit to enforce using `llama_stack` logger.

Currently, various parts of the code base uses different loggers. As a
custom `llama_stack` logger exist and used in the codebase, it is better
to standardize its utilization.

Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
Co-authored-by: Matthew Farrellee <matt@cs.wisc.edu>

fix: fix ```openai_embeddings``` for asymmetric embedding NIMs (#3205)

NVIDIA asymmetric embedding models (e.g.,
`nvidia/llama-3.2-nv-embedqa-1b-v2`) require an `input_type` parameter
not present in the standard OpenAI embeddings API. This PR adds the
`input_type="query"` as default and updates the documentation to suggest
using the `embedding` API for passage embeddings.

<!-- If resolving an issue, uncomment and update the line below -->
Resolves #2892

```
pytest -s -v tests/integration/inference/test_openai_embeddings.py   --stack-config="inference=nvidia"   --embedding-model="nvidia/llama-3.2-nv-embedqa-1b-v2"   --env NVIDIA_API_KEY={nvidia_api_key}   --env NVIDIA_BASE_URL="https://integrate.api.nvidia.com"
```

cleaning up

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

updating session manager to cache messages locally

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

fix linter

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

more cleanup

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-08-21 16:06:30 -04:00

2.4 KiB

NVIDIA Inference Provider for LlamaStack

This provider enables running inference using NVIDIA NIM.

Features

  • Endpoints for completions, chat completions, and embeddings for registered models

Getting Started

Prerequisites

  • LlamaStack with NVIDIA configuration
  • Access to NVIDIA NIM deployment
  • NIM for model to use for inference is deployed

Setup

Build the NVIDIA environment:

llama stack build --distro nvidia --image-type venv

Basic Usage using the LlamaStack Python Client

Initialize the client

import os

os.environ["NVIDIA_API_KEY"] = (
    ""  # Required if using hosted NIM endpoint. If self-hosted, not required.
)
os.environ["NVIDIA_BASE_URL"] = "http://nim.test"  # NIM URL

from llama_stack.core.library_client import LlamaStackAsLibraryClient

client = LlamaStackAsLibraryClient("nvidia")
client.initialize()

Create Completion

response = client.inference.completion(
    model_id="meta-llama/Llama-3.1-8B-Instruct",
    content="Complete the sentence using one word: Roses are red, violets are :",
    stream=False,
    sampling_params={
        "max_tokens": 50,
    },
)
print(f"Response: {response.content}")

Create Chat Completion

response = client.inference.chat_completion(
    model_id="meta-llama/Llama-3.1-8B-Instruct",
    messages=[
        {
            "role": "system",
            "content": "You must respond to each message with only one word",
        },
        {
            "role": "user",
            "content": "Complete the sentence using one word: Roses are red, violets are:",
        },
    ],
    stream=False,
    sampling_params={
        "max_tokens": 50,
    },
)
print(f"Response: {response.completion_message.content}")

Create Embeddings

Note on OpenAI embeddings compatibility

NVIDIA asymmetric embedding models (e.g., nvidia/llama-3.2-nv-embedqa-1b-v2) require an input_type parameter not present in the standard OpenAI embeddings API. The NVIDIA Inference Adapter automatically sets input_type="query" when using the OpenAI-compatible embeddings endpoint for NVIDIA. For passage embeddings, use the embeddings API with task_type="document".

response = client.inference.embeddings(
    model_id="nvidia/llama-3.2-nv-embedqa-1b-v2",
    contents=["What is the capital of France?"],
    task_type="query",
)
print(f"Embeddings: {response.embeddings}")