mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-23 06:29:40 +00:00
This change lets users configure default embedding models at the provider level instead of always relying on system defaults. Each vector store provider can now specify an embedding_model and optional embedding_dimension in their config. Key features: - Auto-dimension lookup for standard models from the registry - Support for Matryoshka embeddings with custom dimensions - Three-tier priority: explicit params > provider config > system fallback - Full backward compatibility - existing setups work unchanged - Comprehensive test coverage with 20 test cases Updated all vector IO providers (FAISS, Chroma, Milvus, Qdrant, etc.) with the new config fields and added detailed documentation with examples. Fixes #2729
1,021 B
1,021 B
inline::meta-reference
Description
Meta's reference implementation of a vector database.
Configuration
| Field | Type | Required | Default | Description |
|---|---|---|---|---|
kvstore |
utils.kvstore.config.RedisKVStoreConfig | utils.kvstore.config.SqliteKVStoreConfig | utils.kvstore.config.PostgresKVStoreConfig | utils.kvstore.config.MongoDBKVStoreConfig |
No | sqlite | |
embedding_model |
str | None |
No | Optional default embedding model for this provider. If not specified, will use system default. | |
embedding_dimension |
int | None |
No | Optional embedding dimension override. Only needed for models with variable dimensions (e.g., Matryoshka embeddings). If not specified, will auto-lookup from model registry. |
Sample Configuration
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/faiss_store.db
Deprecation Notice
⚠️ Warning: Please use the inline::faiss provider instead.