6.7 KiB
Llama Stack Inference Guide
This document provides instructions on how to use Llama Stack's chat_completion
function for generating text using the Llama3.2-11B-Vision-Instruct
model. Before you begin, please ensure Llama Stack is installed and set up by following the Getting Started Guide.
Table of Contents
Quickstart
This section walks through each step to set up and make a simple text generation request.
1. Set Up the Client
Begin by importing the necessary components from Llama Stack’s client library:
from llama_stack_client import LlamaStackClient
from llama_stack_client.types import SystemMessage, UserMessage
client = LlamaStackClient(base_url="http://localhost:5000")
2. Create a Chat Completion Request
Use the chat_completion
function to define the conversation context. Each message you include should have a specific role and content:
response = client.inference.chat_completion(
messages=[
SystemMessage(content="You are a friendly assistant.", role="system"),
UserMessage(content="Write a two-sentence poem about llama.", role="user")
],
model="Llama3.2-11B-Vision-Instruct",
)
print(response.completion_message.content)
Building Effective Prompts
Effective prompt creation (often called "prompt engineering") is essential for quality responses. Here are best practices for structuring your prompts to get the most out of the Llama Stack model:
- System Messages: Use
SystemMessage
to set the model's behavior. This is similar to providing top-level instructions for tone, format, or specific behavior.- Example:
SystemMessage(content="You are a friendly assistant that explains complex topics simply.")
- Example:
- User Messages: Define the task or question you want to ask the model with a
UserMessage
. The clearer and more direct you are, the better the response.- Example:
UserMessage(content="Explain recursion in programming in simple terms.")
- Example:
Sample Prompt
Here’s a prompt that defines the model's role and a user question:
from llama_stack_client import LlamaStackClient
from llama_stack_client.types import SystemMessage, UserMessage
client = LlamaStackClient(base_url="http://localhost:5000")
response = client.inference.chat_completion(
messages=[
SystemMessage(content="You are shakespeare.", role="system"),
UserMessage(content="Write a two-sentence poem about llama.", role="user")
],
model="Llama3.2-11B-Vision-Instruct",
)
print(response.completion_message.content)
Conversation Loop
To create a continuous conversation loop, where users can input multiple messages in a session, use the following structure. This example runs an asynchronous loop, ending when the user types "exit," "quit," or "bye."
import asyncio
from llama_stack_client import LlamaStackClient
from llama_stack_client.types import UserMessage
from termcolor import cprint
client = LlamaStackClient(base_url="http://localhost:5000")
async def chat_loop():
while True:
user_input = input("User> ")
if user_input.lower() in ["exit", "quit", "bye"]:
cprint("Ending conversation. Goodbye!", "yellow")
break
message = UserMessage(content=user_input, role="user")
response = client.inference.chat_completion(
messages=[message],
model="Llama3.2-11B-Vision-Instruct",
)
cprint(f"> Response: {response.completion_message.content}", "cyan")
asyncio.run(chat_loop())
Conversation History
Maintaining a conversation history allows the model to retain context from previous interactions. Use a list to accumulate messages, enabling continuity throughout the chat session.
import asyncio
from llama_stack_client import LlamaStackClient
from llama_stack_client.types import UserMessage
from termcolor import cprint
client = LlamaStackClient(base_url="http://localhost:5000")
async def chat_loop():
conversation_history = []
while True:
user_input = input("User> ")
if user_input.lower() in ["exit", "quit", "bye"]:
cprint("Ending conversation. Goodbye!", "yellow")
break
user_message = UserMessage(content=user_input, role="user")
conversation_history.append(user_message)
response = client.inference.chat_completion(
messages=conversation_history,
model="Llama3.2-11B-Vision-Instruct",
)
cprint(f"> Response: {response.completion_message.content}", "cyan")
assistant_message = UserMessage(content=response.completion_message.content, role="user")
conversation_history.append(assistant_message)
asyncio.run(chat_loop())
Streaming Responses
Llama Stack offers a stream
parameter in the chat_completion
function, which allows partial responses to be returned progressively as they are generated. This can enhance user experience by providing immediate feedback without waiting for the entire response to be processed.
Example: Streaming Responses
The following code demonstrates how to use the stream
parameter to enable response streaming. When stream=True
, the chat_completion
function will yield tokens as they are generated. To display these tokens, this example leverages asynchronous streaming with EventLogger
.
import asyncio
from llama_stack_client import LlamaStackClient
from llama_stack_client.lib.inference.event_logger import EventLogger
from llama_stack_client.types import UserMessage
from termcolor import cprint
async def run_main(stream: bool = True):
client = LlamaStackClient(
base_url="http://localhost:5000",
)
message = UserMessage(
content="hello world, write me a 2 sentence poem about the moon", role="user"
)
print(f"User>{message.content}", "green")
response = client.inference.chat_completion(
messages=[message],
model="Llama3.2-11B-Vision-Instruct",
stream=stream,
)
if not stream:
cprint(f"> Response: {response}", "cyan")
else:
async for log in EventLogger().log(response):
log.print()
models_response = client.models.list()
print(models_response)
if __name__ == "__main__":
asyncio.run(run_main())
With these fundamentals, you should be well on your way to leveraging Llama Stack’s text generation capabilities! For more advanced features, refer to the Llama Stack Documentation.