llama-stack-mirror/llama_stack/providers/inline/preprocessing/basic/basic.py
2025-03-06 16:46:59 +01:00

143 lines
5.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
import re
from typing import List, Optional
import httpx
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.preprocessing import (
Preprocessing,
PreprocessingDataElement,
PreprocessingDataFormat,
PreprocessingDataType,
Preprocessor,
PreprocessorChain,
PreprocessorOptions,
PreprocessorResponse,
)
from llama_stack.providers.datatypes import PreprocessorsProtocolPrivate
from llama_stack.providers.inline.preprocessing.basic.config import InlineBasicPreprocessorConfig
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
from llama_stack.providers.utils.memory.vector_store import content_from_data, parse_pdf
log = logging.getLogger(__name__)
class InclineBasicPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate):
# this preprocessor can either receive documents (text or binary) or document URIs
input_types = [
PreprocessingDataType.binary_document,
PreprocessingDataType.raw_text_document,
PreprocessingDataType.document_uri,
]
# this preprocessor optionally retrieves the documents and converts them into plain text
output_types = [PreprocessingDataType.raw_text_document]
URL_VALIDATION_PATTERN = re.compile("^(https?://|file://|data:)")
def __init__(self, config: InlineBasicPreprocessorConfig) -> None:
self.config = config
async def initialize(self) -> None: ...
async def shutdown(self) -> None: ...
async def register_preprocessor(self, preprocessor: Preprocessor) -> None: ...
async def unregister_preprocessor(self, preprocessor_id: str) -> None: ...
async def preprocess(
self,
preprocessor_id: str,
preprocessor_inputs: List[PreprocessingDataElement],
options: Optional[PreprocessorOptions] = None,
) -> PreprocessorResponse:
results = []
for inp in preprocessor_inputs:
input_type = self._resolve_input_type(inp)
if input_type == PreprocessingDataType.document_uri:
document = await self._fetch_document(inp)
if document is None:
continue
elif input_type == PreprocessingDataType.binary_document:
document = inp.data_element_path_or_content
if inp.data_element_format is None:
log.error(f"Binary document format is not provided for {inp.data_element_id}, skipping it")
continue
if inp.data_element_format != PreprocessingDataFormat.pdf:
log.error(
f"Unsupported binary document type {inp.data_element_format} for {inp.data_element_id}, skipping it"
)
continue
elif input_type == PreprocessingDataType.raw_text_document:
document = interleaved_content_as_str(inp.data_element_path_or_content)
else:
log.error(f"Unexpected preprocessor input type: {input_type}")
continue
if inp.data_element_format == PreprocessingDataFormat.pdf:
document = parse_pdf(document)
new_result = PreprocessingDataElement(
data_element_id=inp.data_element_id,
data_element_type=PreprocessingDataType.raw_text_document,
data_element_format=PreprocessingDataFormat.txt,
data_element_path_or_content=document,
)
results.append(new_result)
return PreprocessorResponse(
success=True, output_data_type=PreprocessingDataType.raw_text_document, results=results
)
async def chain_preprocess(
self,
preprocessors: PreprocessorChain,
preprocessor_inputs: List[PreprocessingDataElement],
) -> PreprocessorResponse:
return await self.preprocess(preprocessor_id="", preprocessor_inputs=preprocessor_inputs)
@staticmethod
def _resolve_input_type(preprocessor_input: PreprocessingDataElement) -> PreprocessingDataType:
if preprocessor_input.data_element_type is not None:
return preprocessor_input.data_element_type
if isinstance(preprocessor_input.data_element_path_or_content, URL):
return PreprocessingDataType.document_uri
if InclineBasicPreprocessorImpl.URL_VALIDATION_PATTERN.match(preprocessor_input.data_element_path_or_content):
return PreprocessingDataType.document_uri
if preprocessor_input.data_element_format == PreprocessingDataFormat.pdf:
return PreprocessingDataType.binary_document
return PreprocessingDataType.raw_text_document
@staticmethod
async def _fetch_document(preprocessor_input: PreprocessingDataElement) -> str | None:
if isinstance(preprocessor_input.data_element_path_or_content, str):
url = preprocessor_input.data_element_path_or_content
if not InclineBasicPreprocessorImpl.URL_VALIDATION_PATTERN.match(url):
log.error(f"Unexpected URL: {url}")
return None
elif isinstance(preprocessor_input.data_element_path_or_content, URL):
url = preprocessor_input.data_element_path_or_content.uri
else:
log.error(
f"Unexpected type {type(preprocessor_input.data_element_path_or_content)} for input {preprocessor_input.data_element_path_or_content}, skipping this input."
)
return None
if url.startswith("data:"):
return content_from_data(url)
async with httpx.AsyncClient() as client:
r = await client.get(url)
return r.content if preprocessor_input.data_element_format == PreprocessingDataFormat.pdf else r.text