# What does this PR do? now that /v1/inference/completion has been removed, no docs should refer to it this cleans up remaining references ## Test Plan ci Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
5.3 KiB
NVIDIA Inference Provider for LlamaStack
This provider enables running inference using NVIDIA NIM.
Features
- Endpoints for completions, chat completions, and embeddings for registered models
Getting Started
Prerequisites
- LlamaStack with NVIDIA configuration
- Access to NVIDIA NIM deployment
- NIM for model to use for inference is deployed
Setup
Build the NVIDIA environment:
llama stack build --distro nvidia --image-type venv
Basic Usage using the LlamaStack Python Client
Initialize the client
import os
os.environ["NVIDIA_API_KEY"] = (
"" # Required if using hosted NIM endpoint. If self-hosted, not required.
)
os.environ["NVIDIA_BASE_URL"] = "http://nim.test" # NIM URL
from llama_stack.core.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient("nvidia")
client.initialize()
Create Chat Completion
The following example shows how to create a chat completion for an NVIDIA NIM.
response = client.inference.chat_completion(
model_id="meta-llama/Llama-3.1-8B-Instruct",
messages=[
{
"role": "system",
"content": "You must respond to each message with only one word",
},
{
"role": "user",
"content": "Complete the sentence using one word: Roses are red, violets are:",
},
],
stream=False,
sampling_params={
"max_tokens": 50,
},
)
print(f"Response: {response.completion_message.content}")
Tool Calling Example
The following example shows how to do tool calling for an NVIDIA NIM.
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
tool_definition = ToolDefinition(
tool_name="get_weather",
description="Get current weather information for a location",
parameters={
"location": ToolParamDefinition(
param_type="string",
description="The city and state, e.g. San Francisco, CA",
required=True,
),
"unit": ToolParamDefinition(
param_type="string",
description="Temperature unit (celsius or fahrenheit)",
required=False,
default="celsius",
),
},
)
tool_response = client.inference.chat_completion(
model_id="meta-llama/Llama-3.1-8B-Instruct",
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
tools=[tool_definition],
)
print(f"Tool Response: {tool_response.completion_message.content}")
if tool_response.completion_message.tool_calls:
for tool_call in tool_response.completion_message.tool_calls:
print(f"Tool Called: {tool_call.tool_name}")
print(f"Arguments: {tool_call.arguments}")
Structured Output Example
The following example shows how to do structured output for an NVIDIA NIM.
from llama_stack.apis.inference import JsonSchemaResponseFormat, ResponseFormatType
person_schema = {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"},
"occupation": {"type": "string"},
},
"required": ["name", "age", "occupation"],
}
response_format = JsonSchemaResponseFormat(
type=ResponseFormatType.json_schema, json_schema=person_schema
)
structured_response = client.inference.chat_completion(
model_id="meta-llama/Llama-3.1-8B-Instruct",
messages=[
{
"role": "user",
"content": "Create a profile for a fictional person named Alice who is 30 years old and is a software engineer. ",
}
],
response_format=response_format,
)
print(f"Structured Response: {structured_response.completion_message.content}")
Create Embeddings
The following example shows how to create embeddings for an NVIDIA NIM.
Note
NVIDIA asymmetric embedding models (e.g.,
nvidia/llama-3.2-nv-embedqa-1b-v2
) require aninput_type
parameter not present in the standard OpenAI embeddings API. The NVIDIA Inference Adapter automatically setsinput_type="query"
when using the OpenAI-compatible embeddings endpoint for NVIDIA. For passage embeddings, use theembeddings
API withtask_type="document"
.
response = client.inference.embeddings(
model_id="nvidia/llama-3.2-nv-embedqa-1b-v2",
contents=["What is the capital of France?"],
task_type="query",
)
print(f"Embeddings: {response.embeddings}")
Vision Language Models Example
The following example shows how to run vision inference by using an NVIDIA NIM.
def load_image_as_base64(image_path):
with open(image_path, "rb") as image_file:
img_bytes = image_file.read()
return base64.b64encode(img_bytes).decode("utf-8")
image_path = {path_to_the_image}
demo_image_b64 = load_image_as_base64(image_path)
vlm_response = client.inference.chat_completion(
model_id="nvidia/vila",
messages=[
{
"role": "user",
"content": [
{
"type": "image",
"image": {
"data": demo_image_b64,
},
},
{
"type": "text",
"text": "Please describe what you see in this image in detail.",
},
],
}
],
)
print(f"VLM Response: {vlm_response.completion_message.content}")