# What does this PR do? - fix env variables - use gpu for vllm - add eks/apply.py for aws - add template to set hf secret ## Test Plan bash apply.sh Co-authored-by: Eric Huang <erichuang@fb.com>
5.9 KiB
Kubernetes Deployment Guide
Instead of starting the Llama Stack and vLLM servers locally. We can deploy them in a Kubernetes cluster.
Prerequisites
In this guide, we'll use a local Kind cluster and a vLLM inference service in the same cluster for demonstration purposes.
Note: You can also deploy the Llama Stack server in an AWS EKS cluster. See Deploying Llama Stack Server in AWS EKS for more details.
First, create a local Kubernetes cluster via Kind:
kind create cluster --image kindest/node:v1.32.0 --name llama-stack-test
First set your hugging face token as an environment variable.
export HF_TOKEN=$(echo -n "your-hf-token" | base64)
Now create a Kubernetes PVC and Secret for downloading and storing Hugging Face model:
cat <<EOF |kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: vllm-models
spec:
accessModes:
- ReadWriteOnce
volumeMode: Filesystem
resources:
requests:
storage: 50Gi
---
apiVersion: v1
kind: Secret
metadata:
name: hf-token-secret
type: Opaque
data:
token: $HF_TOKEN
EOF
Next, start the vLLM server as a Kubernetes Deployment and Service:
cat <<EOF |kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
name: vllm-server
spec:
replicas: 1
selector:
matchLabels:
app.kubernetes.io/name: vllm
template:
metadata:
labels:
app.kubernetes.io/name: vllm
spec:
containers:
- name: vllm
image: vllm/vllm-openai:latest
command: ["/bin/sh", "-c"]
args: [
"vllm serve meta-llama/Llama-3.2-1B-Instruct"
]
env:
- name: HUGGING_FACE_HUB_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
ports:
- containerPort: 8000
volumeMounts:
- name: llama-storage
mountPath: /root/.cache/huggingface
volumes:
- name: llama-storage
persistentVolumeClaim:
claimName: vllm-models
---
apiVersion: v1
kind: Service
metadata:
name: vllm-server
spec:
selector:
app.kubernetes.io/name: vllm
ports:
- protocol: TCP
port: 8000
targetPort: 8000
type: ClusterIP
EOF
We can verify that the vLLM server has started successfully via the logs (this might take a couple of minutes to download the model):
$ kubectl logs -l app.kubernetes.io/name=vllm
...
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
Then we can modify the Llama Stack run configuration YAML with the following inference provider:
providers:
inference:
- provider_id: vllm
provider_type: remote::vllm
config:
url: http://vllm-server.default.svc.cluster.local:8000/v1
max_tokens: 4096
api_token: fake
Once we have defined the run configuration for Llama Stack, we can build an image with that configuration and the server source code:
tmp_dir=$(mktemp -d) && cat >$tmp_dir/Containerfile.llama-stack-run-k8s <<EOF
FROM distribution-myenv:dev
RUN apt-get update && apt-get install -y git
RUN git clone https://github.com/meta-llama/llama-stack.git /app/llama-stack-source
ADD ./vllm-llama-stack-run-k8s.yaml /app/config.yaml
EOF
podman build -f $tmp_dir/Containerfile.llama-stack-run-k8s -t llama-stack-run-k8s $tmp_dir
Deploying Llama Stack Server in Kubernetes
We can then start the Llama Stack server by deploying a Kubernetes Pod and Service:
cat <<EOF |kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: llama-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: llama-stack-server
spec:
replicas: 1
selector:
matchLabels:
app.kubernetes.io/name: llama-stack
template:
metadata:
labels:
app.kubernetes.io/name: llama-stack
spec:
containers:
- name: llama-stack
image: localhost/llama-stack-run-k8s:latest
imagePullPolicy: IfNotPresent
command: ["python", "-m", "llama_stack.distribution.server.server", "--config", "/app/config.yaml"]
ports:
- containerPort: 5000
volumeMounts:
- name: llama-storage
mountPath: /root/.llama
volumes:
- name: llama-storage
persistentVolumeClaim:
claimName: llama-pvc
---
apiVersion: v1
kind: Service
metadata:
name: llama-stack-service
spec:
selector:
app.kubernetes.io/name: llama-stack
ports:
- protocol: TCP
port: 5000
targetPort: 5000
type: ClusterIP
EOF
Verifying the Deployment
We can check that the LlamaStack server has started:
$ kubectl logs -l app.kubernetes.io/name=llama-stack
...
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: ASGI 'lifespan' protocol appears unsupported.
INFO: Application startup complete.
INFO: Uvicorn running on http://['::', '0.0.0.0']:5000 (Press CTRL+C to quit)
Finally, we forward the Kubernetes service to a local port and test some inference requests against it via the Llama Stack Client:
kubectl port-forward service/llama-stack-service 5000:5000
llama-stack-client --endpoint http://localhost:5000 inference chat-completion --message "hello, what model are you?"
Deploying Llama Stack Server in AWS EKS
We've also provided a script to deploy the Llama Stack server in an AWS EKS cluster. Once you have an EKS cluster, you can run the following script to deploy the Llama Stack server.
cd docs/source/distributions/eks
./apply.sh
This script will:
- Set up a default storage class for AWS EKS
- Deploy the Llama Stack server in a Kubernetes Pod and Service