mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-08 23:01:04 +00:00
152 lines
5.4 KiB
Markdown
152 lines
5.4 KiB
Markdown
---
|
|
orphan: true
|
|
---
|
|
# Ollama Distribution
|
|
|
|
```{toctree}
|
|
:maxdepth: 2
|
|
:hidden:
|
|
|
|
self
|
|
```
|
|
|
|
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
|
|
|
|
{{ providers_table }}
|
|
|
|
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.
|
|
|
|
{% if run_config_env_vars %}
|
|
### Environment Variables
|
|
|
|
The following environment variables can be configured:
|
|
|
|
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
|
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
|
{% endfor %}
|
|
{% endif %}
|
|
|
|
|
|
## Setting up Ollama server
|
|
|
|
Please check the [Ollama Documentation](https://github.com/ollama/ollama) on how to install and run Ollama. After installing Ollama, you need to run `ollama serve` to start the server.
|
|
|
|
In order to load models, you can run:
|
|
|
|
```bash
|
|
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
|
|
|
|
# ollama names this model differently, and we must use the ollama name when loading the model
|
|
export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
|
|
ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
|
|
|
|
```bash
|
|
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
|
|
|
|
# ollama names this model differently, and we must use the ollama name when loading the model
|
|
export OLLAMA_SAFETY_MODEL="llama-guard3:1b"
|
|
ollama run $OLLAMA_SAFETY_MODEL --keepalive 60m
|
|
```
|
|
|
|
## Running Llama Stack
|
|
|
|
Now you are ready to run Llama Stack with Ollama as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
|
|
|
### Via Docker
|
|
|
|
This method allows you to get started quickly without having to build the distribution code.
|
|
|
|
```bash
|
|
export LLAMA_STACK_PORT=8321
|
|
docker run \
|
|
-it \
|
|
--pull always \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
-v ~/.llama:/root/.llama \
|
|
llamastack/distribution-{{ name }} \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env OLLAMA_URL=http://host.docker.internal:11434
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, use:
|
|
|
|
```bash
|
|
# You need a local checkout of llama-stack to run this, get it using
|
|
# git clone https://github.com/meta-llama/llama-stack.git
|
|
cd /path/to/llama-stack
|
|
|
|
docker run \
|
|
-it \
|
|
--pull always \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
-v ~/.llama:/root/.llama \
|
|
-v ./llama_stack/templates/ollama/run-with-safety.yaml:/root/my-run.yaml \
|
|
llamastack/distribution-{{ name }} \
|
|
--yaml-config /root/my-run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env SAFETY_MODEL=$SAFETY_MODEL \
|
|
--env OLLAMA_URL=http://host.docker.internal:11434
|
|
```
|
|
|
|
### Via Conda
|
|
|
|
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
|
|
|
```bash
|
|
export LLAMA_STACK_PORT=8321
|
|
|
|
llama stack build --template {{ name }} --image-type conda
|
|
llama stack run ./run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env OLLAMA_URL=http://localhost:11434
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, use:
|
|
|
|
```bash
|
|
llama stack run ./run-with-safety.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env SAFETY_MODEL=$SAFETY_MODEL \
|
|
--env OLLAMA_URL=http://localhost:11434
|
|
```
|
|
|
|
|
|
### (Optional) Update Model Serving Configuration
|
|
|
|
```{note}
|
|
Please check the [model_entries](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/models.py) for the supported Ollama models.
|
|
```
|
|
|
|
To serve a new model with `ollama`
|
|
```bash
|
|
ollama run <model_name>
|
|
```
|
|
|
|
To make sure that the model is being served correctly, run `ollama ps` to get a list of models being served by ollama.
|
|
```
|
|
$ ollama ps
|
|
NAME ID SIZE PROCESSOR UNTIL
|
|
llama3.2:3b-instruct-fp16 195a8c01d91e 8.6 GB 100% GPU 9 minutes from now
|
|
```
|
|
|
|
To verify that the model served by ollama is correctly connected to Llama Stack server
|
|
```bash
|
|
$ llama-stack-client models list
|
|
|
|
Available Models
|
|
|
|
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━┓
|
|
┃ model_type ┃ identifier ┃ provider_resource_id ┃ metadata ┃ provider_id ┃
|
|
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━┩
|
|
│ llm │ meta-llama/Llama-3.2-3B-Instruct │ llama3.2:3b-instruct-fp16 │ │ ollama │
|
|
└──────────────┴──────────────────────────────────────┴──────────────────────────────┴───────────┴─────────────┘
|
|
|
|
Total models: 1
|
|
```
|