llama-stack-mirror/docs/source/distributions/self_hosted_distro/together.md
Ashwin Bharambe 9436dd570d
feat: register embedding models for ollama, together, fireworks (#1190)
# What does this PR do?

We have support for embeddings in our Inference providers, but so far we
haven't done the final step of actually registering the known embedding
models and making sure they are extremely easy to use. This is one step
towards that.

## Test Plan

Run existing inference tests.

```bash

$ cd llama_stack/providers/tests/inference
$ pytest -s -v -k fireworks test_embeddings.py \
   --inference-model nomic-ai/nomic-embed-text-v1.5 --env EMBEDDING_DIMENSION=784
$  pytest -s -v -k together test_embeddings.py \
   --inference-model togethercomputer/m2-bert-80M-8k-retrieval --env EMBEDDING_DIMENSION=784
$ pytest -s -v -k ollama test_embeddings.py \
   --inference-model all-minilm:latest --env EMBEDDING_DIMENSION=784
```

The value of the EMBEDDING_DIMENSION isn't actually used in these tests,
it is merely used by the test fixtures to check if the model is an LLM
or Embedding.
2025-02-20 15:39:08 -08:00

2.3 KiB

orphan
true

Together Distribution

:maxdepth: 2
:hidden:

self

The llamastack/distribution-together distribution consists of the following provider configurations.

API Provider(s)
agents inline::meta-reference
datasetio remote::huggingface, inline::localfs
eval inline::meta-reference
inference remote::together
safety inline::llama-guard
scoring inline::basic, inline::llm-as-judge, inline::braintrust
telemetry inline::meta-reference
tool_runtime remote::brave-search, remote::tavily-search, inline::code-interpreter, inline::rag-runtime, remote::model-context-protocol
vector_io inline::faiss, remote::chromadb, remote::pgvector

Environment Variables

The following environment variables can be configured:

  • LLAMA_STACK_PORT: Port for the Llama Stack distribution server (default: 5001)
  • TOGETHER_API_KEY: Together.AI API Key (default: ``)

Models

The following models are available by default:

  • meta-llama/Llama-3.1-8B-Instruct
  • meta-llama/Llama-3.1-70B-Instruct
  • meta-llama/Llama-3.1-405B-Instruct-FP8
  • meta-llama/Llama-3.2-3B-Instruct
  • meta-llama/Llama-3.2-11B-Vision-Instruct
  • meta-llama/Llama-3.2-90B-Vision-Instruct
  • meta-llama/Llama-3.3-70B-Instruct
  • meta-llama/Llama-Guard-3-8B
  • meta-llama/Llama-Guard-3-11B-Vision
  • togethercomputer/m2-bert-80M-8k-retrieval
  • togethercomputer/m2-bert-80M-32k-retrieval

Prerequisite: API Keys

Make sure you have access to a Together API Key. You can get one by visiting together.xyz.

Running Llama Stack with Together

You can do this via Conda (build code) or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

LLAMA_STACK_PORT=5001
docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  llamastack/distribution-together \
  --port $LLAMA_STACK_PORT \
  --env TOGETHER_API_KEY=$TOGETHER_API_KEY

Via Conda

llama stack build --template together --image-type conda
llama stack run ./run.yaml \
  --port $LLAMA_STACK_PORT \
  --env TOGETHER_API_KEY=$TOGETHER_API_KEY