# What does this PR do? PR #639 introduced the notion of Tools API and ability to invoke tools through API just as any resource. This PR changes the Agents to start using the Tools API to invoke tools. Major changes include: 1) Ability to specify tool groups with AgentConfig 2) Agent gets the corresponding tool definitions for the specified tools and pass along to the model 3) Attachements are now named as Documents and their behavior is mostly unchanged from user perspective 4) You can specify args that can be injected to a tool call through Agent config. This is especially useful in case of memory tool, where you want the tool to operate on a specific memory bank. 5) You can also register tool groups with args, which lets the agent inject these as well into the tool call. 6) All tests have been migrated to use new tools API and fixtures including client SDK tests 7) Telemetry just works with tools API because of our trace protocol decorator ## Test Plan ``` pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct pytest -s -v -k together llama_stack/providers/tests/tools/test_tools.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py ``` run.yaml: https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994 Notebook: https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
3.6 KiB
orphan |
---|
true |
Meta Reference Quantized Distribution
:maxdepth: 2
:hidden:
self
The llamastack/distribution-meta-reference-quantized-gpu
distribution consists of the following provider configurations:
API | Provider(s) |
---|---|
agents | inline::meta-reference |
datasetio | remote::huggingface , inline::localfs |
eval | inline::meta-reference |
inference | inline::meta-reference-quantized |
memory | inline::faiss , remote::chromadb , remote::pgvector |
safety | inline::llama-guard |
scoring | inline::basic , inline::llm-as-judge , inline::braintrust |
telemetry | inline::meta-reference |
tool_runtime | remote::brave-search , remote::tavily-search , inline::code-interpreter , inline::memory-runtime |
The only difference vs. the meta-reference-gpu
distribution is that it has support for more efficient inference -- with fp8, int4 quantization, etc.
Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs.
Environment Variables
The following environment variables can be configured:
LLAMASTACK_PORT
: Port for the Llama Stack distribution server (default:5001
)INFERENCE_MODEL
: Inference model loaded into the Meta Reference server (default:meta-llama/Llama-3.2-3B-Instruct
)INFERENCE_CHECKPOINT_DIR
: Directory containing the Meta Reference model checkpoint (default:null
)
Prerequisite: Downloading Models
Please make sure you have llama model checkpoints downloaded in ~/.llama
before proceeding. See installation guide here to download the models. Run llama model list
to see the available models to download, and llama model download
to download the checkpoints.
$ ls ~/.llama/checkpoints
Llama3.1-8B Llama3.2-11B-Vision-Instruct Llama3.2-1B-Instruct Llama3.2-90B-Vision-Instruct Llama-Guard-3-8B
Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-Guard-3-1B Prompt-Guard-86M
Running the Distribution
You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-meta-reference-quantized-gpu \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
If you are using Llama Stack Safety / Shield APIs, use:
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-meta-reference-quantized-gpu \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
Via Conda
Make sure you have done pip install llama-stack
and have the Llama Stack CLI available.
llama stack build --template meta-reference-quantized-gpu --image-type conda
llama stack run distributions/meta-reference-quantized-gpu/run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
If you are using Llama Stack Safety / Shield APIs, use:
llama stack run distributions/meta-reference-quantized-gpu/run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B