mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 19:04:19 +00:00
# What does this PR do? Rename environment var for consistency ## Test Plan No regressions ## Sources ## Before submitting - [X] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [X] Ran pre-commit to handle lint / formatting issues. - [X] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [X] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests. --------- Signed-off-by: Yuan Tang <terrytangyuan@gmail.com> Co-authored-by: Yuan Tang <terrytangyuan@gmail.com>
2.1 KiB
2.1 KiB
Bedrock Distribution
:maxdepth: 2
:hidden:
self
The llamastack/distribution-bedrock
distribution consists of the following provider configurations:
API | Provider(s) |
---|---|
agents | inline::meta-reference |
datasetio | remote::huggingface , inline::localfs |
eval | inline::meta-reference |
inference | remote::bedrock |
memory | inline::faiss , remote::chromadb , remote::pgvector |
safety | remote::bedrock |
scoring | inline::basic , inline::llm-as-judge , inline::braintrust |
telemetry | inline::meta-reference |
tool_runtime | remote::brave-search , remote::tavily-search , inline::code-interpreter , inline::memory-runtime |
Environment Variables
The following environment variables can be configured:
LLAMA_STACK_PORT
: Port for the Llama Stack distribution server (default:5001
)
Models
The following models are available by default:
meta-llama/Llama-3.1-8B-Instruct (meta.llama3-1-8b-instruct-v1:0)
meta-llama/Llama-3.1-70B-Instruct (meta.llama3-1-70b-instruct-v1:0)
meta-llama/Llama-3.1-405B-Instruct-FP8 (meta.llama3-1-405b-instruct-v1:0)
Prerequisite: API Keys
Make sure you have access to a AWS Bedrock API Key. You can get one by visiting AWS Bedrock.
Running Llama Stack with AWS Bedrock
You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-bedrock \
--port $LLAMA_STACK_PORT \
--env AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
--env AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
--env AWS_SESSION_TOKEN=$AWS_SESSION_TOKEN
Via Conda
llama stack build --template bedrock --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
--env AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
--env AWS_SESSION_TOKEN=$AWS_SESSION_TOKEN